
SOFTWARE REQUIREMENTS: ARE THEY REALLY A PROBLEM?

T. E. Bell and T. A. Thayer

TRW Defense and Space Systems Group
Redondo Beach, California

,Keywords and Phrases

Ball ist ic Missile Defense
Requirements
Requirements Problems
Software Engineering
Software Requirements
Software Requirements Engineering
Software Requirements Problems
SREM
SREP

Abstract

Do requirements arise naturally from an obvious
need, or do they come about only through diligent
effort -- and even then contain problems? Data on
two very different types of software requirements were
analyzed to determine what kinds of problems occur and
whether these problems are important. The results are
dramatic: software requirements are important, and
their problems are surprisingly similar across pro-
jects. New software engineering techniques are
clearly needed to improve both the development and
statement of requirements.

I. Introduction

Identifying the cause of a problem in a software
system is often very easy -- i f the cause is a problem
in code. Typically, identified coding problems result
in clearly incorrect answers or in abnormal termina-
tions of the software. Similarly, problems in a soft-
ware system caused by deficiencies in design are often
easy to identify from unexpected software operation or
from extreme di f f icul ty in maintaining and modifying
the system. Problems in the system caused by defi-
ciencies in software requirements, on the other hand,
are often not identified at a l l , or are thought to be
caused by bad design or limitations of computing tech-
nology. I f there are problems in developing require-
ments, however, the software system meeting those
requirements wil l clearly not be effective in solving
the basic need, even i f the causes of the problems
are incorrectly identified.

The Ball ist ic Missile Defense Advanced Technology
Center (BMDATC) is sponsoring an integrated software
development research program I l l to improve the tech-
niques for developing correct, reliable BMD software.
Reflecting the cr i t ical importance of requirements in
the development process; the Software Requirements
Engineering Program (SREP) has been undertaken as a
part of this integrated program by TRW Defense and

Space Systems Group* to examine and improve the quality
of requirements.

One of the f i r s t efforts in SREP has been to
characterize the problems with requirements so that
techniques can be developed to improve the situation.
Instead of pursuing philosophical discussions about
what the problems might be, we have undertaken empiri-
cal studies to determine what the problems actually
are. A limitation on the number of Ball ist ic Missile
Defense (BMD) systems currently being developed (there
is only one) has led us to examine both BMD and more
common data processing systems to ensure that our
results are characteristic of software requirements in
general, rather than just one particular project.

This paper reports on in i t ia l results that have
set much of the direction pursued in the Software
Requirements Engineering Methodology [2], the Require-
ments Statement Language [3], and the Requirements
Engineering and Validation System [4]. The in i t ia l
efforts were oriented to determine the magnitude and
characteristics of the problems, and to indicate what
types of techniques could correct the problems. The
empirical study of software problems is continuing in
parallel with technology development so that the
technology can be refined and tested for effectiveness
in solving the identified problems.

I I , What are Software Requirements?

One school of thought maintains that software
requirements arise naturally, and that they are correct
by definition. I f these requirements merely state a
basic need (e.g., "do payrol l"), then that's all that
is needed. On the other hand, i f the requirements state
each subroutine's detailed characteristics, then those
are the required characteristics, and the implementer
should not question them.

Adherents to this school of thought have grown
fewer and fewer as the software industry has gathered
experience with this approach to developing software.
When every requirement ranging in detail from needs
statements to subroutine specifications is considered
in the same way, the resulting systems tend to be
seriously deficient. I f coding personnel are assigned
the task of implementing a system with only a needs
statement, the cr i t ical phase of software design will
l ikely be skipped -- with disasterous results. On the
other end of the scale, i f detailed subroutine speci-
fications are accepted without ever having been

*Under Contract DASG60-75-C-O022
61

examined for correctness, the resulting software wi l l
probably fa i l to complete execution normally, much
less produce correct results.

The evolution of approaches for the development
of software systems has generally paralleled the
evolution of ideas for the implementation of code.
Over the last ten years more structure and discipline
have been adopted, and practicioneers have concluded
that a top-down approach is superior to the bottom-up
approach of the past. The Mil i tary Standard set MIL-
STD 490/483 recognized this newer approach by speci-
fying a system requirements document, a "design-to"
requirements document that is created in response to
the system requirements, and then a "code-to" re-
quirements document for each software module in the
design. Each of these is at a lower level of detail
than the former, so the system developers are led
through a top-down process. The same top-down approach
to a series of requirements statements is explained,
without the specialized mil i tary jargon, in an ex-
cellent paper by Royce [5]; he introduced the concept
of the "waterfall" of development act iv i t ies. In
this approach software is developed in the disciplined
sequence of act iv i t ies shown in Figure I .

Each of the documents in the early phases of the
waterfall can be considered as stating a set of
requirements. At each level a set of requirements
serve as the input and a design is produced as output.
This design then becomes the requirements set for the
designer at the next level down.

With so many levels of requirements documents,
and with so few software projects mapping nicely into
the scheme, we must be more specific about what we
mean by the term "software requirements" as used in
our studies. We do not mean al l the various levels
of requirements, but only a single one, one that can
usually be identified in large software development
projects that have ended successfully. At this level
the software requirements describe functions that the
software must perform, but not how they must be
implemented. For example, they might contain a
requirement that a BMD system identify erroneous
P~ADAR returns that have any of five specific charac-
ter ist ics. However, the software to meet this
requirement might be spread through twelve sub-
routines using any of a large number of identification
techniques.

In weapon systems like BMD, these software
requirements l ie at lower (more detailed) levels of
detail than the general, summary Data Processing Sub-
system Performance Requirements (DPSPR); DPSPR re-
quirements may fa i l even to mention error detection.
The software requirements are also at a higher level
of detail (less detailed) than the "code to" require-
ments that describe each subroutine and are des-
cribed in MIL-STD 490 as being in a Type C-5 document.
In information systems (not part of weapon systems)
the same "code-to" (Type C-5) document should exist,
but no DPSPR exists. Instead, a statement of a basic
need is documented. In MIL-STD 490 terminology,
this document is a Type A requirement.

Each of the "software requirements" that we are
discussing l ies at, or below, the level of a Type A
requirement document but at, or above, the level of
a Type B-5 requirement document of 490. Ideally,
each of the requirements has been derived from the
equivalent of a DPSPR or a Type A document (and may
possess deficiencies introduced during the derivation)
and wi l l be used to generate a Type B-5 or a Type C-5
document in the design phase (when the deficiencies
begin to be apparent). However, the nice situation

of having a complete set of requirements, al l at pre-
cisely one level, seldom occurs because requirements
engineers find less d i f f i cu l ty in stating a specific
design, or leaving statements very general, in certain
areas [6]. Therefore, our empirical studies have
concentrated on the documents that have their major
emphasis on the software requirements that we have
defined, even i f they have some requirements at d i f -
ferent levels of detail.

I I I . Empirical Data

The remembrances of engineers who participated on
a requirements engineering project are usually faulty.
Memories are biased by personal conflicts and occur-
rences from long after the software is implemented.
An empirical study of requirements must therefore
either be based on information documented during the
project or be based on data collected during the pro-
ject through observation. We have used data from two
projects in our analyses; for one project we used only
documented data while in the other we used both docu-
mented data and observation.

The pieces of paper recording ~oftware require-
ments deficiencies are typically called problem reports
and are written either to record the results of reviews
or to request changes in the requirements during the
software development project. The points indicated in
Figure 2 during a software development project's l i f e
are the times when most of the problem reports in-
volving software requirements are generated; during
reviews, during design, and during implementation. The
same software requirements deficiency might be iden-
t i f ied at any of several points in the project's l i f e ,
so i t may be documented on a design problem report, a
software problem report, or a test problem report.

Problem reports are only written to document
significant deficiencies -- those that could cause
major or catastrophic problems in the ultimate system.
The effort in writing a problem report is actually
quite small, but the psychological cost of putting a
criticism in written form, and then being wil l ing to
defind i t , is high enough that irrelevant and minor
problems (e.g., spelling errors and indentation) are
ignored.

Problem reports do not generally document the
correction of deficiencies (except for suggested re-
visions), but they do record the symptoms of the pro-
blem. Therefore, data are available for frequency
analysis of symptoms, but not usually for analysis
about the types of correction to the requirement
statement. In some cases the problem report's author
is asked to assign a classification to the report so
that a simple frequency analysis can be performed.
However, previous studies [7] have indicated that the
authors of problem reports experience significant
d i f f i cu l ty in assigning a classification, so problem
reports often do not record the author's impressions.

Data Limitations. Data used in our study about
software requirements problems largely come from
problem reports because of their relat ively objective
nature. However, data from these reports have l imi-
tations that need to be recognized in interpreting our
results and in understanding why previous studies
have not dealt with the topic. These limitations
involve the generally undisiplined manner in which the
software industry undertakes development projects, the
need for interpretation of textual material, and the
lack of information about the causes of the problems.

The typical software development project is not
managed with expl ic i t , baselined requirements or with

62

documented designs, Programmers make decisions about
the system's requirements and design as they feel ap-
propriate, and then they depend on informal communica-
tions to let other programmers know about their deci-
sions. In this environment the quality of data about
requirements problems is very poor (i f i t exists at
a l l) . Therefore, very l i t t l e analysis has been done
on the problems with software requirements, and the
image may have been created that no real problems
exist.

Only in a very disciplined environment do the data
needed for analysis come to exist. In this environment
software requirements engineers and design engineers
tend to be much more careful than they would in an un-
disciplined situation. Fewer deficiencies wi l l exist,
and these wi l l be identified earlier in the project.
Therefore, our results probably describe a requirements
situation less troublesome than those encountered by
software development projects using conventional,
undisciplined approaches.

Even in a disciplined environment, authors of
problem reports find that they are unable to interpret
their problems into a general classification scheme.
This is sometimes due to ambiguity in categories, but
i t appears more often to be due to d i f f icu l ty in ab-
stracting from a specific problem statement that
"something is wrong here". When the author of a
problem report f ina l ly determines that the require-
ments engineer produced a deficient specification,
his mind is concentrated on substantive issues of
content rather than on classifying the problem.
Therefore, our technique has been to examine the
textual description of the problem to determine which
category is most appropriate. The interpretation
probably introduces errors, but i ts superiority has
been obvious over depending only on authors of
problem reports.

The empirical data about deficiencies in software
requirements seldom include the reason that the
deficiency has come to be there; by the time i t is
discovered, the project has progressed and information
about cause can not usually be reconstructed. There-
fore, empirical data about deficiencies in software
requirements typically are only related to the
symptoms and their detection rather than to the
causes and their importance.

IV. Small System Case

Simply interpreting data from a software develop-
ment project might be a dangerous technique for deter-
mining the nature and magnitude of software require-
ments problems. Without knowing the characteristics
of the development project, inappropriate conclusions
could easily be derived. Our f i r s t case involves a
situation in which we could control the environment,
observe the outcome directly, and easily understand
the system decisions because of the relat ively small
size (implementation would cost about $I00,000). This
case was a project in a graduate software engineering
class at UCLA, and i t assigned the students to write
a set of software requirements and a preliminary
system design for a Student Employment Information
System (SEIS).

Description. Dr. Barry W. Boehm divided his
class into two teams, the requirements team and the
design team. Both teams received the "needs statement"
in the form of the memorandum of Figure 3, and the
requirements team produced a functional specification
(the requirements) after about a month. The design
team then used this document to produce a preliminary
design after about one more month.

The students met informally between class sessions
while generating the requirements and the design. In
addition, formal meetings occurred between the two
teams during the design phase in order to resolve
questions that the design team raised about the require-
ments. The members of both teams were urged to record
the problems they detected in the requirements, but no
controls were imposed to ensure complete documentation.
Observation by the instructor during the formal meetings
augmented data that were collected from documentation
by the students.

The authors of this paper provided Boehm with a
form for the students on the design team to use in
documenting the requirements problems. The form (the
Requirements Problem Report, RPR) is shown in Figure 4.
Note that the students were urged to provide some
classification of each problem by inclusion of eight
categories under the t i t l e "Problem Description".
Having a form to f i l l out eased the documentation job
and helped to provide more consistent data.

The original statement of the need was contained
in a single paragraph of the memorandum of Figure 3.
This paragraph grew into 48 pages of text and charts
for the requirements specification. The design team
then produced a document with 63 pages describing two
alternate designs, the proposed implementation plan,
and the "boiler-plate" that would normally accompany
a proposal. One of the proposed designs was a manual
system, and the other one included a batch data pro-
cessing system whose projected cost was inconsistent
with the independent cost estimate generated by the
requirements team. As frequently occurs, the designers
projected that the system's implementation and i ts
execution would be less costly (by about a factor of
two) than the independent cost estimate projected by
the "customer" team.

Requirements Problems. The requirements specifi-
cation gave several senior TRW personnel the general
impression of being superior to most typical require-
ment documents. I t appeared to be more specific,
direct, and complete than the commonly-reviewed
requirement specification.

Number of Problems. In spite of the apparent
quality of the requirement, the design team completed
twenty (20) RPR forms. A wide variety of problems were
documented, from costing assumptions, to the need for
specific requirements, to identification of specific
designs as requirements. As an example of the last,
the requirement specified, "The SEIS Data Base shall
consist of three f i les ; one each for student data,
employer data, and historical data". This is an overly
constraining requirement since many possible designs
could be implemented that would contain these three
types of data; three separate physical f i les are not
the only solution. We put description Number 6 ("Bet-
ter Design Possible") on the RPR form specifically for
the problems like this.

The total of 20 problems identified in the 48
pages of requirements is an under-representation of
the number of the problems. Six of the twenty RPRs
actually documented two problems each, and three RPRs
documented three problems each. Therefore, in a l l , 32
problems were identified and documented.

Even this total is optimistic. In the fast give-
and-take of the formal meetings between the two teams,
identifying and recording each unique problem proved
infeasible. However, Boehm observed the proceedings
as an objective, experienced rater. His estimate [8]
is that the number of problems exceeded 50 -- more than
one per page of double-spaced material. Examination of

63

his notes on the requirements specifications indicates
that this estimate is probably low since several times
that number are documented. I t would be d i f f i cu l t ,
though, to determine an exact number of problems at
this time. This involves determining retrospectively
how many of the noted problems are multiple problems,
how many are duplicate instances of the same problem,
and how many other problems are present but not noted.

The design team examined the requirements speci-
fication only from the viewpoint of producing a
design; they were not doing an expl ic i t requirements
review. They only hypothesized a design since the
class schedule precluded any attempt to implement the
system. Therefore, the requirements were neither
reviewed with maximum care nor were they given the
ultimate test of comparison with user needs through
the implementation of the system. Therefore, even
the total of more than 50 problems is certainly an
underestimate of the totalnumber of problems in the
document.

Characteristics of Problems. The problems
documented on RPR forms were the ones which were
identified when the design team members were clear
about what to document and which were also clearly
important to the design team's work. Analysis of the
characteristics of less important problems would be
speculation, so our analysis is concerned only with
documented problems. We performed the computations
using both the classifications of problems provided
by the design team and a separate classification
that we generated. Table l presents the frequency
of problem types computed from each of these data
bases.

The design team produced 20 RPR forms, but two
of these did not classify the problem into any of
the eight categories. On the other hand, five of
the RPR's (al l of which documented two or three
problems on each form) ~ncluded classification into
two categories. Therefore, 23 classifications were
produced by the design team on 20 RPR's involving
the 32 documented problems.

Our classifications (made by this paper's authors)
were made separately for each problem, whether i t was
on an RPR form by i t se l f or with another problem.
Therefore, our classifications total 32, the number of
problems identified on the RPR forms.

In addition to the difference in total number of
problems classified, the distribution of problems is
different for the design team's classification than
the distribution from our classification. Most of
this difference clearly resulted from different
definitions. For example, we classified some pro-
blems as one requirement being inconsistent with
another requirement (Number 5), but the design team
always classified this type of problem as being
ambiguous. The design team's logic appeared to be
that the inconsistency resulted in the entire set of
requirements being ambiguous about that point. Simi-
la r ly , problems that we fe l t were design-constraining
(Number 6) were sometimes classified by the design
team as being due to an incorrect requirement (Number
4) or were not classified at a l l . The design team
appeared to feel that some of these problems should
be classified as incorrect requirements because
alternatives had been rejected that were clearly
superior. This rejection was incorrect, so category
Number 4 was assigned by the design team.

The two instances where we classified the pro-
blems as "other" both involved identification of
incomplete requirements by the design team. One of

64

these instances was classified by the design team as
simply a case of inadequate information (since no in-
formation was provided about whether some other re-
quirement might have been intended instead). The other
instance was not classified, even though i t was clearly
another case of an incomplete requirement.

We refrained from including a category t i t led
"incomplete" in the fear that the RPR's would pre-
dominately describe places where the requirements
could have included more detail. The category "other"
or the category "more information needed" could be
used for al l the cases where an incomplete requirement
was given; this did not occur. However, this was not
because the requirements were complete in every place
except for the two particulars noted above.

We examined the requirements document to determine
whether obviously incomplete requirements existed. We
found two types of statements that clearly indicated
the presence of incomplete requirements. The f i r s t
type of statement was included in requirements that
the system must do functions "such as" a l i s t , or that
the system must be expandable to do functions "inclu-
ding but not limited to" a l i s t . The second type of
statement occurred at the end of l i s ts of data and
was ". . .etc". Both of these types of requirements are
open-end since they leave the requirements specifier
the option of legitimately demanding the inclusion of
undocumented functions and data after system design
and implementation.

We suspect that the design team failed to iden-
t i f y and/or document these situations because i ts
members did not produce a detailed design or implemen-
tation in which these problems would have required
resolution. The problems detected by the design team
were therefore only the ones important during prelimi-
nary design. The distribution of problems, and perhaps
the number of problems, may be different for projects
that have, or w i l l , actually produce operational code.

The data on the SEIS case clearly indicate that
ambiguous and design-constraining requirements are
the prominent classes of problems. In addition, the
total number of problems seems to be in excess of one
(and probably in excess of two) times the number of
pages in the requirements document. This metric (num-
ber of problems per page) is clearly suspect, but the
magnitude is alarming. We need a look at an actual,
large software development project to determine whether
requirements problems are really so frequent and of
these types.

V. Large Systems

I t is the large software system development pro-
ject that represents a challenge to the data analyst.
On one hand i t is d i f f i cu l t to control the development
environment during the requirements specification and
analysis phases due to the number of participants and
long time involved. And, i t is d i f f i cu l t to accurately
pinpoint causes for observed trends in the data; the
variables are numerous and controls from comparable
projects are v i r tua l ly nonexistant because large sys-
tems tend to be unique, one-time products. On the
other hand the large systems have a potential for
producing tremendous volumes of useful data and for
providing sufficient resources for analyzing these
data in l ight of project characteristics. Our second
case, the System Technology Program, is just such a
project. I t is a large (l million machine instructions)
real-time BMD system being developed with a top-down
approach. This project is particularly attractive
from the standpoint of requirements data analysis
because i t is truly a state-of-the-art project with a

software requirements specification containing over
eight thousand uniquely identifiable requirements
paragraphs. These requirements are subject to change
due to external reasons, as the perceived threat
changes, and due to internal reasons, as the deve-
lopers learn more about the problems to be solved and
the actual needs of the system. I t is appropriate to
say that, while the software i tse l f is state-of-the-
art, the problems being encountered in specifying,
analyzing, and satisfying software requirements are
also state-of-the-art.

Description. Our principal source of data on the
second case is the requirements review, which is
conducted whenever a new software requirements speci-
fication, or B-5 document, is issued. However,
reports documenting requirement-related problems or
needed change can be generated throughout the deve-
lopment cycle, not just during appropriate require-
ment reviews. In fact, such information also comes
from the design phase and as late as the formal
testing phase. As was noted in Figure 2, a series of
problem reports is generated throughout the develop-
ment cycle. While the principal activity may be
software design or testing, documented problems at
any point in the development cycle may identify the
source of the problem as any previous activity, e.g.,
a requirement error documented on a software prob-
lem report written during formal testing. Once a
problem is documented i t is processed by a configu-
ration control board (CCB) which verifies that the
problem is real and assigns some corrective action.
Each documented problem is also tracked by the CCB
to guarantee that all problems are solved, the
requirements and/or design are updated in a controlled
manner, and that all paperwork is eventually closed.

Analysis of requirements problem reports was per-
formed by individuals acquainted with the characteris-
tics of STP development techniques, and classification
of software errors traceable to a source in require-
ments was done by the individual developers who
corrected the errors.

STP requirements problem reports used in this
report arose largely from two major requirements
reviews conducted during the development cycle. The
f i r s t review, conducted in 1973, serves as an indi-
cator of early experience with requirements specifi-
cation and analysis. A later review, conducted in
1975, is indicative of current experience and shows
an increased awareness of software system needs on the
part of the specifiers and reviewers of requirements.
These data sets were treated separately so that dif-
ferences attributable to learning might be recognized.
Of course, we hope eventually to have a third set of
data indicating experience with the system in opera-
tion since the frequency and magnitude of problems
would probably be different at that time than for the
earlier experiences.

Categories of Requirements Problem. Table 2 pre-
sents a l i s t of typical problem categories generated
from STP requirements review problem reports*, and
used in categorizing requirements according to type.
Note that each generic problem category is broken
down further into more detailed categories, e.g., the
"accuracy cri ter ia missing" category is a detailed
category under the general "missing/incomplete/
inadequate" category. The numbering scheme in Table 2
reflects this break-down and is employed in our data

*These reports are similar in format to the RPR
except that problem description categories are
not part of the form.

collection and analysis to ease the job and reduce
ambiguity.

Definitions for most of the problem categories in
Table 2 are self-explanatory; however, several are
peculiar to systems for which controlled change to the
requirements set may not only be a necessary but de-
sirable reality. These categories are 1-000 and 6-000
which register acceptable changes to previously exis-
ting requirements sets, and 2-000 which indicates that
the requirement is not within the technical or con-
tractual boundaries of the software system.

quantity of Problems. One of the most obvious
findings in our studies of requirements problems was
the sheer volume of problems encountered. This alone
was enough reason to convince even the casual observer
that requirements represent a significant problem in
software development. In the two major requirements
reviews mentioned previously, a total of 722 problem
reports documenting 972 uniquely identifiable problems
were written. This was in a review of approximately
8248 requirements and support paragraphs in the 2500
page software requirements specification.

A less obvious finding than the raw occurrences
of requirements problems, but of far greater conse-
quence, is the c r i t i ca l i t y of the individual problems.
In some instances failure to identify and f ix require-
ments problems could result in ultimate non-responsive-
ness of the software system to a known threat, i .e . ,
mission failure. Such a problem is specification of
realizable timing requirements for real-time software
systems. The designed solution for meeting a timing
requirement (normal stimulus to normal response) may
adequately meet the stated requirement. However,
"unusual" stimuli may occur quite frequently, and
ignoring them can cause average response to be bad
enough that system performance is unacceptable. The
designers of the software modules can hardly be
expected to consider the system effects of sequences
of stimuli unless the requirements mention them, but
a particular, unfortunate sequence of stimuli could
increase response time far above normal -- with un-
acceptable system effects. These problems must be
resolved in the requirements to avoid such conse-
quences; designers are concerned with other issues.

Characteristics of Problems. Translating the
general error categories given in Table 2 into histo-
gram form for the STP case, we get Figures 5 and 6.
Again, the separation of early (1973) STP experience
from current (1975) experience is intentional. In
Figure 7 the SEIS data, classified in a fashion com-
patible with STP data, are presented for comparison
purposes.

I t wil l be noted that in all three cases the
"incorrect" category occurred more frequently than
other general categories, exceeding 30 percent in each
case. This finding did not support a suspicion we had
that early requirements reviews would uncover higher
percentages of "missing", "incomplete", "inadequate",
or "unclear" type errors and that in subsequent re-
views the "incorrect" category would dominate. To
some extent this hypothesis may be correct since the
"incorrect" category increased percentagewise while
the other categories decreased between the two STP
reviews.

The "requirement unclear" category is of particu-

65

lar interest because i t is this category that c r i t i -
cizes the terminology and understandability of the
requirement. In this category the requirement may
not be in error; however, its statement leaves confu-
sion or room for multiple interpretations on the part
of the reader/reviewer. Note that, between the 1973
and 1975 reviews of STP, the occurrences of this
category dropped from 25.4 percent to 9.3 percent, a
result one might expect as a result of increased
experience. Note, too, a similar high percentage of
the "unclear" category for the SEIS case, also a
result one might expect from a f i r s t review of re-
quirements written by someone other than the reviewer.

One result which was not expected, nor can we ex-
plain i t at this point, is the near constant per-
centage of errors of inconsistency and incompatability
for each of the cases. This percentage ranged from a
low of 9.1 percent for the recent STP review to a
high of IO.O percent for the SEIS review. We will be
looking for a similar trend in our analysis of
requirements data taken from another large software
project.

Another fa i r ly obvious result of our study is
that the search for requirements problems should be
a continual one. In a review of software problem
reports documented during formal validation testing,
i .e . , problems found subsequent to the design and
coding phases, i t was discovered that errors could
be traced to an origin in software requirements. Of
course, design, coding, and software maintenance
activit ies are also sources of error. However, one
study [9] of the source of software errors found in
the code indicates that the percentage attributable
to requirements and not discovered until testing may
be as high as 12 percent for large, complex software
systems. The importance of continually reviewing
requirements for their impact on design solutions is
obvious, especially in a top-down environment where
each iteration through the development cycle affords
the opportunity to deal with changing or incorrect
requirements, and to factor these changes into the
evolving design.

Another important facet of the requirements
problem can be seen by looking at errors documented
during testing. Analysis of error data collected
from four large software projects [9] showed that the
most common software error type, representing be-
tween 8.0 and 17.8 percent of all problems reported
during testing, were in the missing logic category.
That is, some logic needed as part of a successful
design solution to software requirements was missing.
Although i t was virtual ly impossible to retrospec-
t ively determine how many of these errors might have
been precluded by more completely specified require-
ments, the requirements problem category for "missing",
"incomplete", and "inadequate" problems is believed
to be directly related to problems which eventually
turn up in the code.

A final finding in analysis of the "incorrect"
category of requirements problems was in the nature
of the detailed problem statements. Incorrectness in
the results of the early review of STP requirements
related primarily to functional correctness. That
is, criticism centered on what the software was to do.
In the later review, problems of incorrectness related
primarily to analytical correctness or how well the
software must perform its functions.

VI. Conclusions

Our empirical data clearly show that the rumored
"requirements problems" are a reality. Information

66

needed for design and implementation of both small and
large systems is often incorrect, ambiguous, inconsis-
tent, or simply missing. The requirements for a system,
in enough detail for i ts development, do not arise
naturally. Instead, they need to be engineered and
have continuing review and revision.

The relative frequencies of various types of
requirements problems were surprisingly similar between
radically different kinds of software projects. Of
course, problems with analytical requirements occurred
only on the one project with analytical requirements,
so we could not compare relative frequencies of this
type across projects. We are currently examining
another project with analytical requirements that has
been managed with a disciplined approach. From a
comparison using these new data we will be able to
test our hypothesis that the relative frequency of
analytical problems is nearly constant across projects.

The types of problems detected in requirements
changed during the l i fe of a software development
project. The system developers often determined a
requirement deficiency only when they attempted to
meet the requirement with a design. Clearly, tech-
niques to ease detection and correction of deficiencies
would be valuable. They could reduce the cost of im-
proving the requirements and, i f powerful enough,
could aid in getting the improvements done early.
Early improvement would reduce the cost of designing
to requirements that are subsequently changed -- with
the result that the design work must be repeated.

The types of requirements problems we have ob-
served can probably be reduced in number by improving
the manner in which they are developed and stated.
For example, different names for the same item in
different parts of the requirements specification often
resulted in ambiguity or inconsistency. Some tech-
nique is needed to ensure that naming is consistent
to preclude these problems. Similarly, some methodo-
logy appears needed to aid the verification and vali-
dation of software requirements during their develop-
ment. The complexity of some problems is so great
that we anticipate their continued presence even i f
powerful specification techniques are used to preclude
problems; the remaining problems must be detected and
corrected.

In summary, problems with requirements are fre-
quent and important. Differences between types of
requirement problems is quite small between projects.
Improved techniques for developing and stating
requirements are needed to deal with these problems.

References

I. BMD Advanced Technology Center, "BMDATC Software
Development System: Program Overview," Ball ist ic
Missile Defense Advanced Technology Center, Hunts-
v i l le , Alabama, July 1975.

2. Alford, M., "A Requirements Engineering Methodology
for Real-Time Processing Requirements," in these
conference proceedings.

3. Bell, T. E., and D. C. Bixler, "A Flow-Oriented
Requirements Statement Language," TRW Software
Series, TRW-SS-76-02, April 1976.

4. Bell, T. E., D. C. Bixler, and M. E. Dyer, "An
Extendable Approach to Computer-Aided Software
Requirements Engineering," in these conference
proceedings.

5. Royce, W. W., "Managing the Development of Large

6.

7.

8.

9.

Software Systems: Concepts and Techniques," TRW
Software Series, TRW-SS-70-OI, August 1970.

Meseke, D. W., "Safeguard Data Processing System:
The Data Processing System Performance Require-
ments in Retrospect," Bell System Technical
Journal, Special Supplement, 1975.

Thayer, T. A., "Understanding Software Through
Analysis of Empirical Data," TRW Software Series,
TRW-SS-75-04, May 1975.

Personal communication from B. W. Boehm, May 12,
1976.

Thayer, T. A., et. at. , "Software Reliability
Study: Final Technical Report," TRW Report
75-2266-I.9.-5, March 1976.

MEMO

70:

From:

Subject:

Manager, Information System Specification Group

Director, Student Services Office

STUDENT EMPLOYMENT INFORMATION SYSTEM (SEIS)

A wealthy alumnus has offered to fund the development of a Student Employ-
ment Information System (SEIS) to aid in matching UCLA students to available
jobs. The system should be able to accept and store information on students'
job qualifications and interests, and on employers' available openings. I t
should provide timely responses to students' or employers' job-matching
queries. I t should track the progress of outstanding job offers. I t should
also provide summary information on the job market to appropriate UCL~ ad-
ministrators.

The alumnus is willing to fund the project i f he can be convinced:

(a) that we fully understand what should be developed. He would
like to review a functional specification for the system on
11 February.

(b) that we ful ly understand how SEIS should be developed and what
i t will cost. He would like to review the system design and
cost estimate on I0 March.

This memo directs you to prepare a functional specification by I I February,
and authorizes you to contract for the preparation of a system design and
cost estimate by I0 March. I f you need additional information, please let
me know.

Figure 3. Needs Statement

LEGEND:

SI{R - SYSTEM REQUI~JEMENTS REVIEW
(SYSTEM P.~QUIR]:MENIS)

SDR - SYSIEM ttESIGN REVIIEW
(SOFTWARE "DESIGN-TO" REQUIRF*MEblT$)

pL, R . pRELIMII'4ARy DESIGf'J REVIEW
CDR - CRtl ICAL OESIGN REVIEW

(SOl'[WARE =COOE.TO = RIEOUIREM~NT$)
FCA - FU NC*I IOt'b~L CONFIGURA1 ~ON AUDll
I ~ A . pt ly SICAL CONFIGURAT,OH AUOff

REQUIREMENT PROBLEM REPORT

Figure I. Development Phases of the System
Development Cycle

Author Date

PROBLEM LOCATION IN SEIS

PAGE NO.

PARAGRAPH NO.

%~,,o,s
MAII~TENAI~(~£

I'C/~ . pIfy SlC.AL CONFIGU~ I ION AUDff

PROBLEM DESCRIPTION:

I. TYPO []

2. AMBIGUOUS []

3. NOT NEEDED []

4. INCORRECT []

5. INCONSISTENT WITH OTHER REQUIREMENTS []

6. BETTER DESIGN POSSIBLE []

7. MORE INFORMATION NEEDED []

8. OTHER (AS NOTED BELOW) []

REQUESTED REVISION:

Figure 2. Sources of Problem Reports Figure 4. Requirement Problem Report

67

Table I . Requirement Problem Frequencies

PROBLEM PROBLEM DESIGN TEAM AUTHORS'
NUMBER DESCRIPTION CLASSIFICATION CLASSIFICATION

I Typo 0 I

2 Ambiguous g 10

3 Not Needed 0 0

4 Incorrect 3 4

S Inconsistent with 0 3
Other Requirement

6 B e t t e r D e s i g n P o s s i b l e 3 7

7 More Information Needed 8 7

8 Other 0 2

T o t a l : 23 32

b
2o-

i,o
(o.zl) o

NOT nl
omeEm
BASEL[NL

Figure 5.

(3.2~)

r - -
Ot~-OF.
s ¢ ~ [

(2a.7S)

(31.4g)

(ZS,4Z)

(9.7Z)

I (o.zz) (~.z~) I
MISSIN~ I~om~Ecl tNC~SIIT- NEW/¢~'O R[m~ 1YPOS
INC~£TU ENT/ RE~Cn UNCLEAR
[NADEqUATE I NCO~AT [BLE

Software Requirements Problems - Early
STP Experience (1973)

Table 2. STP Requirements Problem Categories

ERROR
CATEGORY

1 - 0 0 0

2-000
5-014

3-000
3-007

3-001
3 - 0 0 2
3 - 0 0 5
3-006

3-008
3-010

3 - 0 0 8
3 - 0 0 9

4 - 0 0 0
4-001
4-002
4 - 0 0 3
4 - 0 0 4
4-005
4-006
4 - 0 0 7
4-008
4-009
4-010
4o011
4-012
4- Ol 3

4-014
4- 01 S
4 - 0 1 6
4 - O17
4 - 0 1 8
4-019

5-000
5-001
5-002
5 - 0 0 3
5-004

6-000

7 - 0 0 0
7-001
7 - 0 0 2

8-000
8-001
8 - 0 0 2
8 - 0 0 3
8 - 0 0 4

PROBLEM
DESCRIPTION

Requirement Acceptable (but not in current design baseline)

Requirement out-of-scope
Requirement not applicable to loop

Missing/Incomplete/Inadequate
Elements of requirement not stated
Decision criteria inadequate or missing
Requirement paragraph has TBD
Interface characteristics missing
Accuracy criteria missing
Description of physical situation inadequate
Needed processing requirement missing
Processing rate requirement missing
Error recovery requirement missing

Requirement incorrect
Requirement satisfaction probabilistic (under selected conditions)
Timing requirement not realizable with present techniques
Requirement not testable
Accuracy requirement not realizable with present techniques
Requirement (possibly) not feasible in real-time software
Required processing inaccurate
Required processing inefficient
Required processing produces negligible effect
Parameter units incorrect
Equation incorrect
Required processing not necessary
Required processing not reflective of tactical hardware
Requirement overly restrlctive/allows no design f lex ib i l i ty (includes

requirements stated at too low a level)
Physical situation to be modeled incorrect
Required processing illogical/wrong
Required processing not/not always possible
Requirement reference incorrect (i .e., other documentation)
Interpretation of requlrement different from updated version
Requirement redundant with other requirement

Inconsistent/Incompatible
Requirement information not same in two locations in Spec.
Requirement references other paragraphs that do not exist
Requirement information not compatible with other requirements
Requirement conventions (e.g., coordinate systems, definitions) not

consistent with SDP understanding

New/Changed Requirement from PDR Baseline

Requirement Uncl ear
Terms need definition or requirement needs restatement in other words
Requirement doesn't make sense

Typographical
Text typo
Equation typo
Requirement identifier (number) typo
Requirement previously specified missing in updated Part I Spec.

(21.~)

I " I 0 17.251

(1 .S1)
0

NOT IN OUT-OF- INCOMPI.EI(
CURREWI score INA~E~T(
~SELIN[

(]4,ez)

(9.1z) (9.3~) (g.gz)

(7.zz) 1

~o~cl IYPOS
ENTI RE~T UNCLEAR
I N C ~ A I I e L E

Figure 6. Software Requirements Problems - Recent
STP Experience (1975)

30-

20-

(~)
O-

~[e~T
MOT IN
cu~wi
I~$[LIWT

I
RE~4T
ouI'-m:-
,~COPE

(34C4Z)

(30.gZ)

(ZI.gS)

(9.4s)

I (3.1%1
(oz)

MIS$1NG~ INCOfl$ [$I - N[W/*CHG' D i~L ~4T TyP'Q S
] NCPAW~ E I E [NT/ R~4T UN£LEAR
[t~£(~JAT[I~C~AT]BL(

Figure 7. SEIS Problem Frequency

68

