
AGILE ASSESSMENT
GUIDE

Best Practices for Agile Adoption and Implementation

November 2023
GAO-24-105506

Page i GAO-24-105506 Agile Assessment Guide

Preface 1
Introduction 4

Chapter 1 Background 8

Chapter 2 Agile Adoption Challenges in the Federal Government and Actions Taken
in Response 16

Chapter 3 Agile Adoption Best Practices 26

Team Dynamics and Activities 30
Program Operations 48
Organization Environment 58
Best Practices Checklist: Adoption of Agile Methods 74

Chapter 4 Overview of Agile Execution and Controls 77

Chapter 5 Requirements Development and Management in Agile 90

Best Practices Checklist: Requirements Development 109

Chapter 6 Agile and the Federal Contracting Process 113

Best Practices Checklist: Contracting for an Agile Program 138

Chapter 7 Agile and Program Monitoring and Control 140

Work breakdown structure in an Agile environment 140
Cost estimating best practices in an Agile environment 145
Scheduling best practices in an Agile environment 156
Earned value management best practices in an Agile environment 166
Best Practices Checklist: Agile and Program Monitoring and

Control 179

Chapter 8 Agile Metrics 181

Best Practices Checklist: Agile Metrics 199

Contents

Page ii GAO-24-105506 Agile Assessment Guide

Appendix I Objective, Scope, and Methodology 202

Appendix II Key Terms 205

Appendix III Related Terms 217

Appendix IV Auditor’s Key Questions and Effects 218

Appendix V Common Agile Frameworks 253

Appendix VI Debunking Agile Myths 271

Appendix VII Background for Case Studies and Agile in Action 276

Appendix VIII Specialists Who Helped Develop this Guide 292

Appendix IX GAO Contacts and Staff Acknowledgments 295

Tables

Table 1: Description of Commonly Used Agile Frameworks 12
Table 2: Iterative Software Challenges, as Reported by Federal

Agencies 16
Table 3: Laws, Policy, Guidance, Reports, and Entities

Established to Address Agile Challenges 20
Table 4: Summary of Agile Adoption Best Practices 29
Table 5: Manual Coding Quality Assurance Methods 45

Page iii GAO-24-105506 Agile Assessment Guide

Table 6: Summary of Agile Requirements Management Best
Practices 94

Table 7: Summary of Agile and Contracting Best Practices 116
Table 8: Differences between Statement of Work, Performance

Work Statement, and Statement of Objectives 119
Table 9: Examples of Agile Metrics by Metric Category 126
Table 10: 12-Step Cost Estimating Process and Agile Cadence

Examples 147
Table 11: Characteristics of a Reliable Cost Estimate and Agile

Artifacts 150
Table 12: Comparison of Consistent Sizing and Relative Sizing 152
Table 13: 10 GAO Schedule Estimating Best Practices and Agile

Examples 158
Table 14: GAO Earned Value Management Best Practices 167
Table 15: 13 Earned Value Management Activities and Agile

Examples 168
Table 16: Summary of Agile Metrics Best Practices 182
Table 17: Terms used in this guide and related terms 217
Table 18: DevOps Principles 255
Table 19: Disciplined Agile Roles and Responsibilities 257
Table 20: Disciplined Agile Principles 258
Table 21: Dynamic Systems Development Method Principles 259
Table 22: eXtreme Programming Activities 260
Table 23: eXtreme Programming Values 261
Table 24: Lean Software Development Principles 263
Table 25: Scaled Agile Framework Roles and Responsibilities 265
Table 26: Scaled Agile Framework Principles 265
Table 27: Scrum Team Structure 267
Table 28: Scrum Principles 268
Table 29: Case Studies Drawn from GAO Reports Used in this

Guide 276
Table 30: Agile in Action Examples Drawn from GAO Interviews 291

Figures

Figure 1: Comparison of Agile and Waterfall Methods for
Developing Software 9

Figure 2: Overview of Agile Adoption Best Practices 28
Figure 3: Relationship between the Agile Team and Customers 32
Figure 4: Example of a Road Map 63
Figure 5: Agile Planning Levels 80

Page iv GAO-24-105506 Agile Assessment Guide

Figure 6: Comparison of Traditional Waterfall and Agile
Development Program Management Constraints 82

Figure 7: Overview of Requirements Management Best Practices
in Agile 94

Figure 8: Prioritized Backlog for an Agile Program 104
Figure 9: Overview of Agile and Contracting Best Practices 115
Figure 10: Comparison of SOO, PWS, and SOW Flexibility 120
Figure 11: Comparison of Waterfall and Agile Programs’ Review

Cycles 129
Figure 12: Roles When Planning, Managing, and Executing an

Agile Contract 132
Figure 13: Work Breakdown Structure in an Agile Program 142
Figure 14: Work Breakdown Structure Relationship to Road Map 144
Figure 15: Traditional and Agile Earned Value Management

Tracking Methods 172
Figure 16: Comparison of Traditional and Agile EVM Products 174
Figure 17: Example of Measuring Earned Value for an Agile

Feature 175
Figure 18: Overview of Agile Metrics Best Practices 182
Figure 19: Example of a Cumulative Flow Diagram: Lead Time

and Cycle Time 186
Figure 20: Example of a Cumulative Flow Diagram: Band Width 187
Figure 21: Example Burn Down and Burn Up Charts 199
Figure 22: Timeline of Agile Development 254
Figure 23: Kanban Board 262
Figure 24: Representation of Scrum@Scale 269

Page v GAO-24-105506 Agile Assessment Guide

Abbreviations

AM Agile modeling
ATO authority to operate
AUP Agile Unified Process
C2D2 continuous capability development and delivery
CAD Cost Analysis Division
CFD cumulative flow diagram
CI/CD continuous integration/continuous development
CIO chief information officer
CONOPs Concept of Operations
COR contracting officer’s representative
COTR contracting officer’s technical representative
CPIC Capital Planning and Investment Control
DA Disciplined Agile
DCSA Defense Counterintelligence and Security Agency
DHS Department of Homeland Security
DevOps Development and Operations
DOD Department of Defense
DSDM Dynamic Systems Development Method
EVM earned value management
ELIS Electronic Immigration System
FAR Federal Acquisition Regulation
FDD Feature Driven Development
FEMA Federal Emergency Management Agency
FIPS Federal Information Processing Standard
FITARA Federal Information Technology Acquisition Reform

Act
FOC full operational capability
G2 Generation 2 (NNSA Program Management

Information Systems)
GMM Grants Management Modernization
GSA General Services Administration
HQ Headquarters
ICE U.S. Immigration and Customs Enforcement
INVEST Independent, Negotiable, Valuable, Estimable,

Small, Testable
ISTS Information Systems and Technology Services

Page vi GAO-24-105506 Agile Assessment Guide

IT Information Technology
JCWA Joint Cyber Warfighting Architecture
JMS Joint Space Operations Center Mission System

Increment 2
LeSS Large Scale Scrum
MVP Minimum viable product
MUOS Mobile User Objective System
MoSCoW Must have, should have, could have, won’t have

(sometimes would have)
NBIS National Background Investigation Services
NDAA National Defense Authorization Act
NIST National Institute of Standards and Technology
NNSA National Nuclear Security Administration
OCX Next Generation Operational Control System
OMB Office of Management and Budget
OTC Office of Transformation Coordination
RFP request for proposal
SAFe Scaled Agile Framework
SEVIS Student and Exchange Visitor Information System
SBIRS Space-Based Infrared System
SOO Statement of Objectives
SOW Statement of Work
Space C2 Air Force Space Command and Control
SSA Social Security Administration
TIM Technology Infrastructure Modernization
TSA Transportation Security Administration
TWIC Transportation Worker Identification Credential
USCYBERCOM U.S. Cyber Command
USCIS U.S. Citizenship and Immigration Services
USDS U.S. Digital Services
VPN Virtual Private Network
VSM Value Stream Mapping
WBS work breakdown structure
XP eXtreme Programming

This is a work of the U.S. government and is not subject to copyright protection in the
United States. The published product may be reproduced and distributed in its entirety
without further permission from GAO. However, because this work may contain
copyrighted images or other material, permission from the copyright holder may be
necessary if you wish to reproduce this material separately.

Page 1 GAO-24-105506 Agile Assessment Guide

441 G St. N.W.
Washington, DC 20548

The U.S. Government Accountability Office (GAO) is responsible for
assisting Congress in its oversight of the executive branch, including
assessing federal agencies’ management of information technology (IT)
systems. In prior audits, GAO has reported that federal agencies faced
challenges in developing, implementing, and maintaining their IT
investments. Agency IT programs have frequently incurred cost overruns
and schedule slippages while contributing little to mission-related
outcomes. Accordingly, in February 2015 GAO added the government’s
management of IT acquisitions and operations to its list of high-risk
programs.1

Recognizing the severity of issues related to government-wide
management of IT, in 2014 Congress passed and the President signed
federal IT acquisition reform legislation, commonly referred to as the
Federal Information Technology Acquisition Reform Act, or FITARA.2 This
legislation was enacted to improve agencies’ acquisitions of IT and
enable Congress to monitor agencies’ progress and hold them
accountable for reducing duplication and achieving cost savings. Among
its specific provisions is a requirement for Chief Information Officers
(CIOs) at covered agencies to certify that certain IT investments are
adequately implementing incremental development as defined in the
Office of Management and Budget’s (OMB) capital planning
guidance.3OMB’s implementing guidance requires covered agencies to

1GAO, High Risk Series: An Update, GAO-15-290 (Washington, D.C.: Feb. 11, 2015).
Some examples of GAO reports showing the struggles of federal agencies in
implementing IT systems include: GAO, Software Development: Effective Practices and
Federal Challenges in Applying Agile Methods, GAO-12-681 (Washington, D.C.: July 27,
2012); Information Technology: OMB and Agencies Need to More Effectively Implement
Major Initiatives to Save Billions of Dollars, GAO-13-796T (Washington, D.C.: July 25,
2013); TSA Modernization: Use of Sound Program Management and Oversight Practices
is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington, D.C.: October 17,
2017); and FEMA Grants Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164 (Washington, D.C.: (April 9, 2019).

2Carl Levin and Howard P. “Buck” McKeon National Defense Authorization Act for Fiscal
Year 2015, Pub. L. No. 113-291, §§ 831-837, 128 Stat. 3292, 3438-3450 (commonly
referred to as the Federal Information Technology Acquisition Reform Act) (Dec. 2014),
(codified at 40 U.S.C. § 11319).

340 U.S.C. § 113119(b)(1)(B)(ii).

Preface

https://www.gao.gov/products/GAO-15-290
https://www.gao.gov/products/GAO-12-681
https://www.gao.gov/products/GAO-13-796T
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-19-164

Page 2 GAO-24-105506 Agile Assessment Guide

use incremental development approaches that would deliver enhanced or
new functionality to users at least every 6 months.4

One approach for iterative and incremental development is Agile software
development, which has been adopted by many federal agencies. It
emphasizes early and continuous software delivery and is defined by
values and principles that can be realized through a set of common
practices seen in specific Agile frameworks, such as DevOps, eXtreme
Programming, Lean, Kanban, Scrum, and others. Agile frameworks are
also used to develop hardware programs and manage services. The best
practices in this guide are intended to be applicable with any incremental
development program, regardless of what type of product or service is
being delivered. However, the focus of this guide will be how Agile
frameworks are used in software development.

This guide has been developed with the assistance of many
knowledgeable specialists in the field of Agile and other incremental
software development methods to aid federal agencies, departments, and
auditors in assessing an organization’s readiness to adopt Agile methods
as well as enable assessment of an agency’s use of Agile methods.5 An
overview of Agile software development is also available as a GAO
Science and Tech Spotlight.6

The best practices in this guide are presented as high-level concepts of
software development, contracting, and program management that
highlight aspects of Agile development throughout a program’s life cycle,
and address key risks to an organization, program, or team without
prescriptive “how to” steps. Many other publications address how to apply
best practices in using an incremental approach to software development.

4Office of Management and Budget, Management and Oversight of Federal Information
Technology, Memorandum M-15-14 (June 10, 2015), at 18.

5Agile is the name we use to describe iterative, incremental software development
methods in this guide, with concepts from Lean, Kanban, DevOps, or other more specific
methods. For example, Kanban may not be considered an Agile software development
methodology, but it may be considered a management method used to improve the
flexibility of the activities of knowledge workers during software development. An
organization that intends to adopt a specific Agile method should supplement guidance
described later in this guide with additional materials that specifically address the practical
application of that specific method.

6GAO, Science & Tech Spotlight: Agile Software Development, GAO-20-713SP
(Washington, D.C.: Sep. 29, 2020).

https://www.gao.gov/products/GAO-20-713SP

Page 3 GAO-24-105506 Agile Assessment Guide

Readers can refer to those sources when considering a specific
development topic.

GAO plans to periodically update this guide based on users’ experience
and comments.

If you have any questions concerning this guide, contact Brian Bothwell at
(202) 512-6888 or BothwellB@gao.gov or Carol Harris at (202) 512-4456
or HarrisCC@gao.gov. Major contributors to this guide are listed in
appendix VIII and contact points for our Offices of Congressional
Relations and Public Affairs are located in appendix IX.

Brian Bothwell
Director
Science, Technology Assessment,
and Analytics Team

Carol Harris
Director
Information Technology and
Cybersecurity Team

mailto:BothwellB@gao.gov
mailto:HarrisCC@gao.gov

Page 4 GAO-24-105506 Agile Assessment Guide

The federal government spends at least $100 billion annually on
information technology (IT) investments. In our April 2023 High Risk List
report, GAO reported on 34 high risk areas, including the management of
IT acquisitions and operations.7 While the executive branch has
undertaken numerous initiatives to help agencies better manage their IT
investments, these programs frequently fail or incur cost overruns and
schedule slippages while contributing little to mission-related outcomes.
GAO has found that OMB continues to demonstrate leadership
commitment by issuing guidance for covered agencies to implement
statutory provisions commonly referred to as FITARA.8 However, covered
federal agencies have not fully implemented the provisions of FITARA.
For example, as of February 2023, 15 of the 24 major federal agencies
had yet to fully implement our recommendations to create IT
management policies that fully addressed the roles of their Chief
Information Officers (CIO) consistent with federal laws and guidance.9

This Agile Guide is intended to address generally accepted best practices
for Agile adoption, execution, and control. In this guide, we use the term
best practice to be consistent with the use of the term in GAO’s series of
best practices guides.10

This guide is an update to GAO-20-590G, the exposure draft of the Agile
Assessment Guide. Our approach to developing this guide was to
ascertain best practices for Agile software development from leading

7GAO, High Risk Series: Efforts Made to Achieve Progress Need to Be Maintained and
Expanded to Fully Address All Areas, GAO-23-106203 (Washington, D.C.: Apr. 20, 2023).

8The provisions apply to the agencies covered by the Chief Financial Officers Act of 1990,
31 U.S.C. § 901(b). These agencies are the Departments of Agriculture, Commerce,
Defense, Education, Energy, Health and Human Services, Homeland Security, Housing
and Urban Development, Justice, Labor, State, the Interior, the Treasury, Transportation,
and Veterans Affairs; the Environmental Protection Agency, General Services
Administration, National Aeronautics and Space Administration, Nation Science
Foundation, Nuclear Regulatory Commission, Office of Personnel Management, Small
Business Administration, Social Security Administration and the U.S. Agency for
International Development. However, FITARA has generally limited application to the
Department of Defense.

9GAO-23-106203.

10GAO, Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G (Washington, D.C.: Mar. 12, 2020), Schedule
Assessment Guide: Best Practices for Project Schedules, GAO-16-89G (Washington,
D.C.: Dec. 22, 2015) and Technology Readiness Assessment Guide: Best Practices for
Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects,
GAO-20-48G (Washington, D.C.: Jan 7, 2020).

Introduction

Developing the Guide

https://www.gao.gov/products/GAO-20-590G
https://www.gao.gov/products/GAO-23-106203
https://www.gao.gov/products/GAO-23-106203
https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G
https://www.gao.gov/products/GAO-20-48G

Page 5 GAO-24-105506 Agile Assessment Guide

practitioners and to develop standard criteria to determine the extent to
which agency software development programs meet these practices. We
supplemented this knowledge by consulting the technical literature as well
as by summarizing previous GAO studies. These best practices center on
Agile adoption, execution, and control. We developed each best practice
in consultation with a committee of IT and program management
specialists and organization executives across government, private
industry, and academia. We describe our scope and methodology in
detail in appendix I.

We have developed this guide to serve multiple audiences:

• Federal auditors are the primary audience for this guide. Specifically,
the guide presents best practices that can be used to assess the
extent to which an agency has adopted and implemented Agile
methods.

• Organizations and programs that have already established policies
and protocols for Agile adoption and execution can use this guide to
evaluate their existing approach to Agile software development.

• Organizations and programs that are adopting or are planning to
adopt Agile software development practices can use this guide to help
inform their transitions.

This guide focuses on best practices surrounding Agile adoption,
execution, and controls. For example, chapter 3 groups commonly
recognized best practices for Agile adoption into the areas of team
dynamics and activities, program operations, and organization
environment. Chapter 4 provides an overview of high-level program
management concepts surrounding Agile execution and control best
practices, such as requirements development and management,
acquisition strategies, and program monitoring and control. Agile
execution best practices related to requirements development and
management and the federal contracting process are discussed in more
detail in chapters 5 and 6, respectively. Program control and monitoring
best practices for cost estimating, scheduling, and earned value
management are discussed in chapter 7, and best practices for metrics
that can be used during the adoption, execution, and monitoring and
control periods of the program are discussed in chapter 8.

The Guide’s Readers

The Guide’s Contents

Page 6 GAO-24-105506 Agile Assessment Guide

Certain concepts in the chapters are further explained in the appendixes.
Definitions of the key terms and processes discussed throughout this
guide are explained in appendix II. Related terms and their comparison to
terms with similar meanings from different methodologies are described in
appendix III.

This guide also contains case studies drawn from prior GAO work. These
case studies highlight successes and challenges typically associated with
Agile adoption and execution in federal settings. They are meant to
augment the key points and lessons learned described in each chapter.
For example, GAO has found that problems can arise due to the
misapplication of Agile software development processes and methods.11
Similar to the case studies, Agile in Action descriptions were developed
by interviewing agency officials, reviewing documentation, and performing
site visits to observe Agile methods in use. To help verify that the
information presented in these examples was complete, accurate, and
current, we provided each organization with a draft version of our
summary analysis. We subsequently corrected and updated our draft
based on the comments we received. Appendix VII provides high-level
information for each program used in a case study and a summary of the
Agile in Action process.

The Agile Assessment Guide team thanks the many subject matter
experts in the federal government, private industry, and academia who
helped make this guide a reality. After we discussed our initial plans for
developing this guide with GAO’s Cost Working Group and at various
technical conferences, several members expressed interest in working
with us. They formed the initial membership of our Agile Working Group
that convened in August 2016. This number grew as the work developed,
and the contributions of all have been invaluable. Thanks to everyone
who gave their time and expertise in meetings, provided us with
documentation and comments, and hosted us at their facilities as we
observed their Agile methods in real time. Contributors to the Agile
Working Group are listed in appendix VIII and GAO staff who contributed
to this guide are listed in appendix IX.

11For example, in GAO, Immigration Benefits System: US Citizenship and Immigration
Services Can Improve Program Management (GAO-16-467) we reported that the
Transformation program was not setting outcomes for Agile software development and in
TSA Modernization: Use of Sound Program Management and Oversight Practices is
Needed to Avoid Repeating Past Problems (GAO-18-46) we reported that the Technology
Infrastructure Modernization (TIM) program did not define key Agile roles, prioritize system
requirements, or implement automated capabilities.

Acknowledgments

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-18-46

Background
Chapter 1

Chapter 1: Background

Page 8 GAO-24-105506 Agile Assessment Guide

Agile software development is well-known for its emphasis on the
development of software in iterations that are being continuously
evaluated on their functionality, quality, and customer satisfaction.12 This
method is well suited for programs in which the final product is to include
distinct features, some of which may be discovered during the process
rather than planned at the beginning. Information obtained during these
frequent iterations can effectively assist in measuring progress and
allowing developers to respond quickly to feedback from customers, thus
reducing technical and programmatic risk.13 With its focus on early and
continuous delivery of working software, Agile can be a valuable tool for
organizations to help mitigate schedule and budget risks.

Customer and User

The term ‘customer’ can mean different things depending on the perspective. For
example, a customer often refers to the end user of a system, but there are also
instances where the customer and sponsor are the same individual. The definition of
the customer(s) is organizationally and contextually dependent.

Source: GAO. I GAO-24-105506

Figure 1 compares requirements, design, development, and testing using
Agile software methods to those of the Waterfall framework; it illustrates
how requirements, design, development, and testing are performed
concurrently in small iterations for Agile and sequentially in Waterfall
development.14 In contrast to Waterfall, using an Agile framework can
result in an organization producing software using frequent reviews and
customer feedback to help ensure that the highest value requirements are
being met. Figure 1 compares Agile and Waterfall methods for developing

12In this guide, an iteration is a predefined, time boxed, recurring period of time in which
working software is created. Similarly, a release is defined as a planning segment of
requirements that are useable. For more information, see appendix II.

13See appendix II for more information on how we define this term and use it throughout
the guide.

14A 1970 paper entitled “Managing the Development of Large Software Systems” by Dr.
Winston W. Royce is considered by the Software Engineering Institute and others to be
the basis for the Waterfall framework. (See Royce, Winston, “Managing the Development
of Large Software Systems. Reprinted from proceedings, IEEE WESCOM (August 1970),
pages 1-9). Although the paper never uses the term “Waterfall,” the model has sequential
phases that flow continuously from one step to the next. While the paper noted that this
model is risky because it is unknown how the system will actually work until the testing
phase and recommended iterative interaction between steps, it became the foundation for
what is known as the Waterfall approach.

Chapter 1: Background

Chapter 1: Background

Page 9 GAO-24-105506 Agile Assessment Guide

software, assuming that high-level planning for both Agile and Waterfall
development has already occurred.

Figure 1: Comparison of Agile and Waterfall Methods for Developing Software

Chapter 1: Background

Page 10 GAO-24-105506 Agile Assessment Guide

The Value of Using Agile

With an emphasis on the early and continuous delivery of working software, Agile can
be a valuable tool for mitigating risks. By collaborating with customers in collaboration
early in the program and continuously adapting to changing requirements and
environments, it helps to limit the chance of continuing to fund a failing program or
outdated technology.

Source: GAO. I GAO-24-105506

While some versions of incremental development were being used as
early as the 1950s, the Agile approach was articulated in 2001 by a group
of 17 software developers that called themselves the Agile Alliance. In
February 2001, the Alliance released “The Agile Manifesto,” in which they
declared: “We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have come to
value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Response to change over following a plan.” 15

The Alliance added that, while they recognized the value in the second
part of each statement (e.g., “processes and tools”), they saw more value
in the first part (e.g., “individuals and interactions”). The Alliance further
delineated their vision with 12 principles. The 12 Agile principles behind
the Manifesto are:

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter time scale.

4. Business people and developers must work together daily throughout
the project.

15© 2001-2023 Agile Manifesto authors https://agilemanifesto.org.

https://agilemanifesto.org/

Chapter 1: Background

Page 11 GAO-24-105506 Agile Assessment Guide

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity, the art of maximizing the amount of work not done, is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.16

There are numerous approaches, or frameworks, available for Agile
programs to use. A framework is a basic structure to guide customers,
rather than a prescriptive process. Each framework is unique and may
have its own terminology for processes and artifacts, though the
frameworks are not mutually exclusive and so can be combined.17 When
implementing Agile in a federal environment, all staff, both government
and contractor, will want to work together to define the Agile terms and
processes that will be used for their particular program. Agile, as a
concept, is not prescriptive; however, when applied to an organization, it
may be. Regardless of the specific frameworks and practices, it is
important that an entity’s Agile application aligns with the manifesto and
Agile principles. A detailed description of commonly used Agile
frameworks is located in appendix V. Table 1 provides a high-level
definition for several commonly used Agile development frameworks.

16© 2001-2023 Agile Manifesto authors https://agilemanifesto.org.

17Some frameworks vary from the Agile Manifesto’s values and principles. For example,
Kanban must have a customer who has requested a service and an end point where the
request is fulfilled and delivered to the customer. In this case, the manifesto’s value of
“customer collaboration over contract negotiation” applies differently than in a time boxed
framework, such as Scrum.

https://agilemanifesto.org/

Chapter 1: Background

Page 12 GAO-24-105506 Agile Assessment Guide

Table 1: Description of Commonly Used Agile Frameworks

Individual team framework Description
eXtreme Programming (XP) XP is a process that originated from taking software best practices to the extreme. XP

processes incorporate five key values: 1) communication, 2) feedback, 3) simplicity, 4)
courage, and 5) respect. XP values constant communication between customers,
developers, user stories, and management as well as having a simple and clean design. Pair
programming and 100 percent unit testing are some examples of key XP practices.

Feature Driven Development (FDD) In FDD, development is driven from the functionality perspective. FDD adheres to the
following steps: develop the overall model, build feature list, plan by feature, design by
feature, and build by feature. FDD uses a number of best practices, including Domain Object
Modeling and Individual Code Ownership.

Kanban The Kanban framework encourages collaboration within and cooperation across teams to
smooth the flow of work from commitment to delivery. It focuses on relieving workers and
systems of overburdening to improve predictability and quality. The Kanban framework seeks
to limit work in progress in order to alleviate bottlenecks and to optimize flow throughout
development. Team members “pull” work when they are able to, as opposed to work being
“pushed” down to them, to smooth the flow of work and eliminate unevenness. Kanban uses
the following practices: visualize the work flow, limit work in progress, manage flow, make
policies explicit, implement feedback loops, and improve collaboratively. Kanban’s most
prominent feature is a visual task board divided into columns that represent activities required
to deliver the service, such as analysis, development, testing, and deployment. Tasks are
written on notes and placed on the board, and move horizontally through the columns as the
work is completed. As with other team frameworks, electronic means for facilitating flow are
available to supplement manual-based visualization.

Scrum Scrum defines the team by three core roles: product owner, development team, and scrum
master. Development is broken down into time boxed iterations called sprints, where teams
commit to complete specific requirements. During a sprint, teams meet for daily standup
meetings. At the end of the sprint, teams demonstrate the completed work to the product
owner for acceptance. A retrospective meeting is held after the sprint to discuss any changes
to the process.

Agile at Scale frameworksa
Disciplined Agile (DA) Building on different Agile methodologies, DA is a decision framework that can be scaled and

is intended to address the whole product life cycle. Key aspects of DA include: people-first,
learning-oriented, hybrid methodologies, full delivery life cycle, process goal driven, solution
focused, risk/value life cycle, and enterprise aware. DA has defined roles of team members
within the framework.

Dynamic Systems Development
Method (DSDM)

Previously known as DSDM Atern, this is a framework for rapid development. There are eight
principles: 1) focus on business need, 2) deliver on time, 3) collaborate, 4) never compromise
on quality, 5) build incrementally from firm foundations, 6) develop iteratively, 7) communicate
continuously and clearly, and 8) demonstrate control. One core technique of DSDM is
prioritizing requirements as Must have, Should have, Could have, and Won’t have but would
like, or MoSCoW.

LeSS Large Scale Scrum (LeSS) is a scaled-up version of one-team Scrum and it maintains many
of the practices and ideas of one-team Scrum. LeSS includes: 1) a single prioritized backlog,
2) one definition of done for all teams, 3) one product owner, and 4) many complete, cross-
functional teams with no single specialist teams. In LeSS, all teams are in a common
iteration to deliver a common, shippable product

Chapter 1: Background

Page 13 GAO-24-105506 Agile Assessment Guide

Individual team framework Description
Scaled Agile Framework (SAFe)b SAFe is a framework for implementing Agile at scale. The framework provides guidance for

roles and inputs for different levels in an organization, tailored to each unique context. There
are 10 principles: 1) take an economic view, 2) apply systems thinking, 3) assume variability,
4) build incrementally in cycles, 5) base milestones on evaluation of working systems, 6)
make value flow without interruptions, 7) apply cadence, 8) unlock motivation of workers, 9)
decentralize decision making, and 10) organize around value.

Scrum@Scale Scrum@Scale is a framework for managing multiple Scrum teams. Staff are organized onto
Scrum teams, and, as the organization expands, it will add more Scrum teams.
Scrum@Scale organizes 4-5 Scrum teams into a new group, called a Scrum of Scrums.
Ideally, the Scrum of Scrums will be responsible for developing working software every
increment. The Scrum of Scrums has a Scrum Master and a Product Owner. If the
organization expands even more, the pattern is repeated, where four to five Scrum of
Scrums are organized into a Scrum of Scrum of Scrums.

Hybrid frameworkc
Scrumban A combination of Scrum and Kanban, teams generally abide by Scrum roles while using

Kanban to view workload and improve flow. Scrumban can be considered the application of
Kanban to a Scrum framework to help an organization tailor its Scrum to better align with their
goals. With Scrumban, the amount of work is not limited to the sprint, but to the work in
progress limit. Meetings in Scrumban are often scheduled as needed, as opposed to a
specific schedule with sprints.

Related frameworksd
Crystal The Crystal method outlines different methodologies based on the number of people involved

and the criticality of the software. The framework that most closely resembles Agile is called
Crystal Clear. The methods rely on trust and communication. Unlike other methodologies that
dictate discipline to specific practices, Crystal allows freedom for individual preferences and
work habits.

DevOps DevOps, with its name stemming from a combination of development and operations,
emphasizes collaboration between development, IT operations, and quality assurance with
the goal of more frequent software releases. The overall DevOps values align with Agile, and
DevOps is considered an expansion of Agile implementation practices to all areas of a
product’s life cycle. One common DevOps principle is, “infrastructure as code”, which means
that operating environments are managed the same as code, with version control,
automation, and continuous testing. Further, under DevSecOps, security becomes an
integrated part of the development build that is the responsibility of the whole team,
incorporated into all stages of the software development workflow.

Lean Software Development Lean software development applies principles from lean manufacturing to software
development. There are seven key principles: 1) eliminate waste, 2) amplify learning, 3)
deliver fast, 4) decide late, 5) empower the team, 6) build integrity in, and 7) optimize the
whole product.

Source: GAO analysis of information from the Department of Homeland Security, Department of Justice, VersionOne Inc., Scaled Agile Inc., I GAO-24-105506
aScaled frameworks are those that are intended to increase Agile processes so that they can be
applied to large, complex organizational structures.
bThe description of SAFe is as of July 2023 and is based on SAFe V6.0.
cHybrid frameworks combine principles and practices from more than one Agile framework.
dRelated frameworks are those that are very similar to Agile frameworks and often use many of the
same principles and practices. Many of these frameworks, such as DevOps, extend Agile principles
such as communication to enable additional collaboration.

Chapter 1: Background

Page 14 GAO-24-105506 Agile Assessment Guide

When selecting a framework, organizations should adopt a deliberative
process based on the needs of a given program as well as the culture
and structure of the organization. For example, adopting Agile or one of
these frameworks might require a dramatic shift in the culture of the
organization. This might, in turn, change an organization’s structure and
result in changes to the physical space used by development teams. A
further discussion on Agile adoption best practices for teams, programs,
and organizations is included in chapter 3.18

18For this guide, a program can be defined in various ways for budgeting and policy
making purposes. Whether a program is defined as an activity, project, function, or policy,
it must have an identifiable purpose or set of objectives if an evaluator is to assess how
well its purpose or objectives are met. An evaluation can assess an entire program or
focus on an initiative within a program. In the case of IT systems, a single program could
be part of a project within a larger program. For that reason, this guide uses the term
program; however, that term can also refer to a project.

Agile Adoption Challenges in the Federal
Government and Actions Taken in Response

Chapter 2

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 16 GAO-24-105506 Agile Assessment Guide

Information systems are integral to many aspects of federal government
operations. Congress has expressed long-standing interest in monitoring
and improving federal IT investments, which are often developed in long,
sequential phases. Numerous agencies have tried using an Agile
approach, which calls for producing software in small, short increments.

In a 2012 report, GAO identified 14 challenges federal agencies reported
they encountered while applying Agile methods to an IT software
development program.19 GAO grouped the challenges reported into four
areas: organizational commitment and collaboration, preparation,
execution, and evaluation. In part, the challenges reported were the result
of a cultural or social environment that was not conducive to a successful
transition. For example, teams reported difficulty collaborating closely or
transitioning to self-directed work due to constraints in organization
commitment and collaboration. Moreover, some organizations reported
that they did not have trust in iterative solutions and that teams had
difficulty managing iterative requirements. Table 2 shows the specific
program management activities organized by these four areas and the
challenges organizations reported when transitioning to Agile.

Table 2: Iterative Software Challenges, as Reported by Federal Agencies

Program management activity Challenges
Organizational commitment and collaboration: Actions by
management that are necessary to ensure that a process is
established and will endure

Teams had difficulty collaborating closely
Teams had difficulty transitioning to self-directed work
Staff had difficulty committing to more timely and frequent input
Organizations had trouble committing staff

Preparation: Establish teams and processes prior to
implementing Agile for a program

Timely adoption of new tools was difficult
Technical environments were difficult to establish and maintain
Agile guidance was not clear
Procurement practices may not have supported Agile programs

Execution: Establish the concrete steps necessary to conduct the
defined Agile approach

Customers did not trust iterative solutions
Teams had difficulty managing iterative requirements
Compliance reviews were difficult to execute within an iteration
time frame

Evaluation: Assess processes to improve the Agile approach Federal reporting practices did not align with Agile methods
Traditional artifact reviews did not align with Agile methods
Traditional status tracking did not align with Agile methods

Source: Summary of GAO-12-681 | GAO-24-105506

19GAO, Software Development: Effective Practices and Federal Challenges in Applying
Agile Methods, GAO-12-681 (Washington, D.C.: Jul. 27, 2012).

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Challenges

https://www.gao.gov/products/GAO-12-681
https://www.gao.gov/products/GAO-12-681

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 17 GAO-24-105506 Agile Assessment Guide

Case study 1: Updating policy to reflect Agile principles, from
Space Command and Control, GAO-20-146

In October 2019, GAO reported that the Air Force’s Space Command and Control
(Space C2) Program was taking an Agile approach to software development to more
quickly and responsively provide capability to customers. According to Air Force
officials, Agile development was relatively new to Department of Defense (DOD)
programs. In the past, requirements were solidified in advance of development and the
software was delivered as a single completed program at the end of the development
cycle—with no continual involvement or feedback from customers or ability to modify
requirements. The Space C2 program was one of the first DOD software-intensive
programs to move away from the Waterfall approach and into an Agile framework.
However, we reported that the then-current DOD acquisition instruction did not include
guidance for Agile software programs.

GAO reported that DOD officials stated that new software guidance was in
development, and this guidance was expected to offer pathways for developing Agile
programs. DOD had also developed a draft template to assist Agile programs with
developing their acquisition strategies, though the template and associated software
guidance were in the early stages of development. In the meantime, however, Space
C2 program officials confirmed that they were operating without specific software
acquisition guidance. Space C2 officials also clarified that, while Agile software
acquisition guidance had not yet been formally published, the program office had been
actively engaged with the Office of the Under Secretary of Defense for Acquisition and
Sustainment in refining draft policy and guidance. The program office noted that its
program activities over the past year had been informed by and were consistent with
this draft guidance.

DOD was taking steps to ensure that the Space C2 program had a comprehensive
approach in place for managing, identifying, and mitigating challenges associated with
an Agile development approach. However, GAO reported that key program plans and
agency-wide guidance were still in draft form, leaving uncertainty about how program
development and oversight would ultimately proceed. Finalizing a robust acquisition
strategy containing the key elements for ongoing planning and evaluation would better
position the program for success.

GAO, Space Command and Control: Comprehensive Planning and Oversight Could
Help DOD Acquire Critical Capabilities and Address Challenges, GAO-20-146
(Washington, D.C.: October 30, 2019).

Source: GAO. I GAO-24-105506

Agile programs depend on balancing team stability with having the
flexibility to add staff and resources to complete each release and adapt it
quickly, based on lessons learned from one release to the next. Thus,
Agile development benefits most when teams are stable, at a minimum
for an iteration; changing staff and resources often is not the intent of
Agile. Rather, the flexibility of Agile comes from continuous improvement

https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-20-146

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 18 GAO-24-105506 Agile Assessment Guide

and the ability to adjust the teams, if needed, based on the program’s
changing scope and work.

One official stated that federal procurement practices do not always
support this flexibility. For example, contracts that require Waterfall-based
artifacts to evaluate contractor performance are not needed in an Agile
approach where the contractor is part of the team and their performance
is based on the delivery of an iteration. This official added that it can be a
challenge for contractor staff to meet iteration time frames when tasks
change, since federal contracting officers require structured tasks and
performance checks. As a result, adding some flexibility in requirements
is a contracting challenge. Chapter 6 discusses contracting best practices
that can assist organizations as they work to reconcile Agile methods with
contract requirements.

Programs using Agile methods develop software in increments that are
added onto the previous build; however, some agency officials reported
that their staff mistrust such iterative solutions. For example, one official
stated that federal customers expect to see a total solution; consequently,
a demonstration of the functionality provided in one iteration or even one
release was sometimes not considered good enough. The small
increment of functionality demonstrated caused staff to doubt the Agile
team’s ability to deliver the remaining requirements, creating a parallel
fear that the Agile team would not meet commitments. Officials also
stated that this mistrust hindered the federal customer’s ability to develop
a definition of “done”—a commitment detailing the activities that must be
completed to be considered releasable—which is an essential component
of the process.

While a key tenet of Agile is prioritizing requirements, one official reported
that customers found it challenging to validate and prioritize requirements
by release, as they were used to defining all requirements at the
beginning of the program and not revisiting them until they had been
completed. Additionally, another official said it was difficult to reprioritize
requirements when new work was identified.

In addition, iterations may incorporate compliance reviews to ensure that
organizational legal and policy requirements are being met. However, one
official stated that they found it challenging to complete compliance
reviews within the short, fixed time frame of a single iteration because
compliance reviewers were used to following a less flexible schedule
under Waterfall development. Specifically, the official said that reviewers
prioritized requests as they arose and that the reviews took months to

Challenges in executing Agile
methods

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 19 GAO-24-105506 Agile Assessment Guide

perform. This caused delays for the iterations that needed to be assessed
within a few weeks in order to proceed with the program in a timely
manner.

Agile software development methods stress evaluation of working
software over extensive documentation and traditional program
management milestone reporting. Officials said that this difference can
present challenges in evaluating federal programs due to the lack of
alignment between Agile and traditional evaluation practices. For
example, federal oversight bodies request status reports for Waterfall
development at development milestones and have not adjusted to Agile
methods of frequent updates of each increment. As a result, an official
reported that Agile teams became frustrated when dashboard statistics
appeared negative.

Traditional oversight requires detailed artifacts at the beginning of a
program, such as cost estimates and strategic plans, while Agile methods
advocate an incremental analysis. One official stated that requiring these
artifacts early in an Agile program can be challenging because it can be
more worthwhile to start with a high-level cost estimate and vision or road
map that gets updated as the solution is more refined through each
iteration, rather than spending time estimating costs and strategies that
may change. Chapter 6 discusses how program milestones and reviews
can be aligned to an Agile cadence and other concerns related to
contracting for Agile programs.

Furthermore, officials stated that program status tracking in Agile did not
align with traditional methods. For example, one official stated that
tracking the level of effort using story points instead of the traditional
estimating technique based on hours was a challenge because team
members were not used to that estimation method. One official stated
that the required use of earned value management can be onerous
without guidance on how to adopt earned value management to reflect
data about iteration progress. Another barrier to the adoption of earned
value management can arise if the organization’s upper management
does not embrace an Agile mindset and instead tracks monthly changes
in cost, schedule, and product scope as control problems rather than as
revisions to be expected during the iterative process. Chapter 7 discusses
the application of performance management systems, such as earned
value management, to Agile programs.

Challenges in evaluating Agile
methods

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 20 GAO-24-105506 Agile Assessment Guide

Since 2012, Congress and the federal government have taken steps to
improve policies and processes to help federal agencies adapt their
current processes to Agile methods. Table 3 provides a summary of laws,
policies, guidance, reports, and entities that have been established to
help address challenges. The table is not an exhaustive list.

Table 3: Laws, Policy, Guidance, Reports, and Entities Established to Address Agile Challenges

Effort Date Purpose
Office of Management and Budget
(OMB), Office of Federal
Procurement Policy (OFPP)
Contracting Guidance to Support
Modular Development

June 2012 To provide organizations with contracting guidance to support
modular development, as required by item 15 in the 25 Point
Implementation Plan to Reform Federal Information Technology,
published on December 9, 2010. The guidance discusses factors that
contracting officers, in support of IT managers, will need to consider
as they plan for modular development efforts. This includes how to
ensure that there is appropriate competition at various stages in the
process, how broad or specific the statements of work should be,
when to use fixed-price contracts, and how to promote opportunities
for small business. The guidance states that projects using modular
development can be designed using iterative or “Agile” development
so that subsequent projects can add capabilities incrementally, and
that projects should aim to deliver functional value frequently and
produce functionality in as little as 6 months.

General Services Administration
(GSA): created 18F office

March 2014 18F is an office within the GSA, whose purpose is to collaborate with
other agencies to fix technical problems, build products, and deliver
digital services and technology products. It was started by a group of
presidential innovation fellows to extend their efforts to improve and
modernize government technology. 18F effects change using basic
Agile tenets to practice user-centered development, testing to validate
hypotheses, shipping often, and deploying products to users.

U.S. Digital Service (USDS)
created

August 2014 USDS, under the Executive Office of the President, provides
consulting and fosters multi-disciplinary teams to bring best practices
and new approaches, such as Agile software development, to support
government modernization efforts.

U.S. Digital Services: Playbook August 2014 To increase the success rate of USDS projects, this playbook
contains 13 key “plays” drawn from successful practices from the
private sector and government that, if followed together, are intended
to help government organizations build effective digital services. For
example, one of the “plays” is that the government build the service
using Agile and iterative practices.

TechFAR: Handbook for Procuring
Digital Services Using Agile
Processes

August 2014 Highlights flexibilities in the Federal Acquisition Regulation (FAR) that
can help organizations implement “plays” in the Digital Services
Playbook that would be accomplished with acquisition support. It is
designed to facilitate a common understanding among stakeholders
of the best ways to use acquisition authorities in making these
investments to set expectations and maximize the likelihood for
success. It consists of a handbook, sample language, and a
compilation of FAR provisions that are relevant to Agile software
development and is not intended to supplant existing laws,
regulations, or agency policy.

Actions Taken to Address
Challenges

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 21 GAO-24-105506 Agile Assessment Guide

Effort Date Purpose
18F: Digital Contracting Cookbook 2014. last updated

January 2016
Provides organizations with information and suggestions about how to
acquire digital services based on the authors’ experience. The
cookbook is not a “how to” guide for digital services; it recognizes that
organizations’ requirements are all different. It notes that there are
multiple ways to achieve success. For example, the cookbook
includes a section on Agile development that states that the
contractor shall, among other things, “Use Agile management best
practices for estimating, planning, managing risk, and communicating
status to enable the effective management of the project team along
with user and product-owner expectations as to what will be done and
by when.”

Federal Information Technology
Acquisition Reform Act (FITARA)

December 2014 The Federal Information Technology Acquisition Reform Act
(FITARA) was enacted to improve the acquisition and monitoring of
federal IT assets. FITARA is intended to enable Congress to monitor
organizations’ progress and hold them accountable for reducing
duplication and achieving cost savings through seven areas: federal
data center consolidation; enhanced transparency and improved risk
management; agency CIO authority enhancements; portfolio review;
expansion of training and use of IT acquisition cadres; government-
wide software purchasing program; and maximizing the benefit of the
Federal Strategic Sourcing Initiative. FITARA also codified a
requirement that covered agency CIOs certify that IT investments are
adequately implementing incremental development, as defined in the
capital planning guidance issued by OMB.

Federal Acquisition Institute: Agile
Acquisitions 101

April 22, 2015 This briefing addresses the differences between Agile development
and contracting for Agile programs, citing that both traditional
contracting and contracting using Agile processes have defined
requirements. It notes that the FAR offers several options for
implementing agility in federal contracts, which is a basic Agile tenet.

OMB OFPP: Pilot for Digital
Acquisition Innovation Lab

March 2016 A pilot program aimed at helping organizations drive innovation in
acquisition, and intended to provide a pathway to test new or
improved practices and help programs successfully adopt emerging
acquisition best practices. The Digital Services Council provides
funding to USDS and 18F and consulting to support their work with
pilot agencies, while USDS, 18F, and a team of presidential
innovation fellows provides hands-on coaching of cross-functional
teams, a basic Agile tenet, to agencies.

Defense Science Board: Design
and Acquisition of Software for
Defense Systems

February 2018 The report is intended to provide independent advice to the Secretary
of Defense on software development based on commercial best
practices from industry and success within the Department of
Defense (DOD). The Board made seven recommendations on how to
improve software acquisitions in defense systems, including the
importance of the software factory, continuous iterative development
best practices, and other ways to improve the software and
acquisition workforce.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 22 GAO-24-105506 Agile Assessment Guide

Effort Date Purpose
Defense Innovation Board:
Software is Never Done report

May 2019 The report is intended to provide specific and detailed
recommendations to the DOD on implementing modern software
practices. The report emphasizes speed and cycle time as the most
important metrics for managing software, the need for promoting
digital talent in the workforce, and streamlined DOD acquisition
processes for multiple types of software-enabled systems. For
example, it states that while DOD is moving from Waterfall to Agile
development, DOD must also change how programs and contractors
are managed, which goes beyond moving to Agile development.

Department of Defense (DOD)
Instruction 5000.87 Operation of
the Software Acquisition Pathway

October 2020 Incorporates and cancels “Software Acquisition Pathway Interim
Policy and Procedures,” January 2020. In accordance with the
authority in DOD Directive 5135.02, this issuance establishes policy,
assigns responsibilities, and prescribes procedures for the
establishment of software acquisition pathways to provide for the
efficient and effective acquisition, development, integration, and
timely delivery of secure software in accordance with the
requirements of Section 800 of Public Law 116-92.

DOD Digital DNA October 2021 The Digital DNA training pilot aligns the processes and practices that
are the foundation for emerging technology and the Defense
Acquisition System.

U.S. Digital Service TechFAR Hub August 2014, updated
January 2023

The refreshed TechFAR Hub is a resource to help government
acquisition and program professionals buy, build, and deliver modern
digital services while staying in compliance with the FAR, as detailed
in the TechFAR handbook.

DOD Instruction 5000.82
Requirements for the Acquisition of
Digital Capabilities

June 2023 Establishes policy, assigns responsibilities, and provides procedures
for the acquisition of digital capabilities. Assigns program
responsibilities concerning the acquisition of digital capabilities.
Describes the responsibilities and procedures of principal acquisition
officials in the acquisition of programs containing information
technology, including national security systems within DOD authority,
across all acquisition pathways.

GSA 18F De-risking Government
Technology. Federal Agency Field
Guide

July 2023 Provides instructions to federal agencies in how to budget for,
procure, and oversee software development projects, to reduce risk
and wasteful spending, support teams effectively, and improve
outcomes for end users.

Source: GAO analysis of OMB, GSA, and DOD documentation. | GAO-24-105506

While these laws, policies, guidances, reports, and entities helped to
address challenges, federal agencies often continue to struggle with
software development. Management in these organizations is
accustomed to oversight through a series of document-centric technical
reviews, such as design reviews that focus on the evolution of artifacts
that describe the requirements and design of a system. In contrast, Agile
methods try to focus management attention on evolving implementation.

Since reporting on Agile program management challenges in 2012, GAO
has continued to examine and report on Agile adoption, execution, and
monitoring and control efforts in the federal government. We have found

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 23 GAO-24-105506 Agile Assessment Guide

that organizations continue to face challenges with the adoption and
execution of Agile programs. For example, in 2016, we found that the
U.S. Citizenship and Immigrations Services (USCIS) Transformation
program had produced software increments, but was not consistently
following its own guidance and leading practices.20 Further, in 2019 we
found that while DOD planned to involve users and obtain and
incorporate user feedback for its space systems acquisition portfolio, they
were often unsuccessful. This was due, in part, to the lack of specific
guidance on user involvement and feedback.21

In addition, in 2020 we found that the Department of Homeland Security
(DHS) had addressed four of nine leading practices for adoption of Agile
software development after identifying Agile software development as the
preferred approach for all its IT programs and projects. Although the
department had modified its acquisition policies to support Agile
development, it needed to take additional steps, such as ensuring that
staff is appropriately trained and ensuring expectations for tracking
software code quality. GAO recommended that DHS review and update
existing policies, clarify roles and guidance, and consider additional
controls to implement Agile best practices.22 More recently, in 2022 we
found that the DOD Space Command and Control (C2) System annual
report addressed statutory requirements. However, Space C2’s program
documentation and reporting—both in its annual report and internal
reports—do not give a clear picture of progress. In addition, Space C2 did
not complete all planned development efforts as scheduled in the past,
and the lack of documentation obscures a useful picture of progress.
GAO recommended that the Secretary of the Air Force establish
consistent performance metrics across annual reports, create metrics to
track how much work remains, and assess risk in current and future
program development.23

20GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 7, 2016).

21GAO, DOD Space Acquisitions: Including Users Early and Often in Software
Development Could Benefit Programs, GAO-19-136 (Washington, D.C.: March 18, 2019).

22GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June 1,
2020).

23GAO, Space Command and Control: Improved Tracking and Reporting Would Clarify
Progress Amid Persistent Delays, GAO-23-105920 (Washington, D.C.: June 8, 2023).

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-23-105920

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 24 GAO-24-105506 Agile Assessment Guide

In general, we found that Agile adoption and execution challenges remain
in federal organizations. This may be due to significant differences in
focus: many organizations find it difficult to prepare for technical reviews
that do not account for implementation artifacts, the availability of
requirements, or design artifacts that are at different levels of abstraction.
On the other hand, some organizations are surprised to discover they are
already performing practices that can ease Agile adoption, such as
establishing user groups that meet frequently with developers. In addition,
while many of the policies and guidance focus on Agile principles, there
are others that address cost, schedule, or contracting. It is important that
organizations reconcile Agile principles and government policies and
guidance with cost and schedule reporting requirements.

Organizations should supplement the Agile software development
practices described in this guide with additional internal controls, such as
policy and guidance.24 Establishing such internal controls can help an
organization become more efficient and effective. For example, internal
controls can contribute to consistent execution of Agile practices across
the organization and inform learning and improvement efforts. Such
controls also support an organization’s ability to report reliable information
about its software development efforts.

24For more information about internal controls, see GAO, Standards for Internal Control in
the Federal Government, GAO-14-704G. (Washington, D.C.: Sept. 10, 2014).

https://www.gao.gov/products/GAO-14-704G

Agile Adoption Best Practices
Chapter 3

Chapter 3: Agile Adoption Best Practices

Page 26 GAO-24-105506 Agile Assessment Guide

Transitioning to Agile software development methods requires
practitioners to do more than implement new or modify existing tools,
practices, and processes.25 Converting to Agile requires adopting the
values and principles of the Agile Manifesto, which introduces challenges
as an organization shifts from Waterfall development methods to those of
an iterative process like Agile, that emphasizes rapid, frequent delivery of
production-quality software. Yet, an Agile approach also presents an
opportunity for an organization to improve its acquisition and development
of software.

Organizations can use the best practices described in this chapter to help
them manage and mitigate the challenges in making the transition to
Agile.26 The practices described are organized by functional perspective:
team dynamics and activities, program operations, and organization
environment. The discussion is in general terms in order to be useful
regardless of the Agile method used. The practices highlight the aspects
of Agile adoption that address key risks to be considered and are not
meant to encompass all aspects of software development or program
management. They can be used alone, or in conjunction with information
from other publications that address similar topics.

This chapter assumes that a team, program, or organization has carefully
chosen to adopt Agile software development methods. The decision to
adopt Agile will depend on a multitude of factors, such as the stability of
requirements, nature of the system, and program complexity. The best
practice “Organization culture supports Agile methods” discusses how to
decide whether or not Agile is the best-suited software development
methodology for an organization’s program.

There are practices often associated with an Agile approach, such as
prescribed roles, events, artifacts, and procedures, but these vary

25As with any significant process improvement effort that an organization undertakes,
change can be difficult and therefore presents risk. Management should consider the
transition to Agile a process improvement or change management effort and manage the
undertaking based on organizational change management principles.

26This guide incorporates materials authored by Carnegie Mellon University with funding
and support of the Department of Defense under federal contract FA8721-05-C-00003 for
the operation of the Software Engineering Institute. Contact permission@sei.cmu.edu for
re-use of such materials. Also, see our guide on reducing risks when using Agile methods:
GAO, Software Development: Effective Practices and Federal Challenges in Applying
Agile Methods, GAO-12-681 (Washington, D.C.: July 27, 2012).

Chapter 3: Agile Adoption Best Practices

https://www.gao.gov/products/GAO-12-681

Chapter 3: Agile Adoption Best Practices

Page 27 GAO-24-105506 Agile Assessment Guide

depending on the methodology used. Over time, teams may refine and
evolve their practices based on experience and lessons learned.

Because the adoption of Agile requires a shift in mindset at all levels of an
organization, attempting to address all of the best practices at the same
time can be difficult to manage and may lead to an inordinate amount of
disruption and change in a short period of time. Therefore, management
might consider prioritizing the best practices so it implements the most
important practices before moving on to the next set of practices.27
Prioritizing the order of adoption may result in an organization prioritizing
individual practices from the different functional environments (team
dynamics and activities, program operations, and organization
environment) of practices described in this chapter, rather than prioritizing
an entire set of practices from any single functional environment.
Consistent with continuous improvement, some best practices will be
more applicable to new adopters, while other practices will be more
applicable to organizations with more experience using Agile.28

Within each Agile framework, specific terms may not fully align with the
terms used in the best practices discussed in this chapter.29 For example,
a program might use a different term from the terms used in this guide to
capture the concept of a product owner. Use of the specific terminology in
this guide is not essential, but the concepts described in each best
practice as a whole should be observable. If not, then organization
officials should be able to explain why excluding a best practice (or
elements of one) does not introduce unacceptable risk to the
organization’s transition to Agile. Although identified across varying
levels, these best practices are highly interrelated (e.g., they all have to

27Although not discussed in this guide, some organizations might wish to consider a
maturity or readiness model to help in prioritizing practices. Maturity models for Agile are
readily available for use independent of this guide, although we cannot attest to the
success or appropriateness of these models. In addition, the CMMI® Institute has
developed profiles for the use of CMMI in environments using selected Agile methods
(CMMI is a registered trademark of Information Systems Audit and Control Association,
Inc.).

28Kanban methods deal with change somewhat differently than other Agile methods and
may not limit the cultural barriers that impede change. Kanban methods enable an
organization to improve its agility in any professional services or knowledge worker
activity, not only software development, without implementing as many new processes.
Organizations may choose to adopt other Agile methods in a similar fashion, focusing on
slow, continuous, incremental change to existing business processes.

29See appendix II for definitions of key terms used in this guide.

Chapter 3: Agile Adoption Best Practices

Page 28 GAO-24-105506 Agile Assessment Guide

be aligned toward common goals) and therefore, each support the
success of other practices.

Figure 2 identifies the best practices associated with each functional
perspective of Agile implementation. Table 4 following the figure
describes, at a high level, the qualities associated with each practice.

Figure 2: Overview of Agile Adoption Best Practices

Chapter 3: Agile Adoption Best Practices

Page 29 GAO-24-105506 Agile Assessment Guide

Table 4: Summary of Agile Adoption Best Practices

Agile adoption best practice Summary
Team dynamics and activities
Team composition supports Agile methods • Agile teams are self-organizing

• The role of the product owner is defined to support Agile methods
Work is prioritized to maximize value for the customer • Agile teams use user storiesa to define work

• Agile teams estimate the relative complexity of user stories
• Requirements are prioritized in a backlog based on value

Repeatable processes are in place • Agile programs employ continuous integration
• Mechanisms are in place to ensure the quality of code being developed
• Agile teams meet daily to review progress and discuss impediments
• Agile teams perform regular demonstrations
• Agile teams perform regular retrospectives

Program operations
Staff are appropriately trained in Agile methods • All members of an Agile team have appropriate training, since

techniques used are different from those used for Waterfall development
programs

• Developers and all other supporting team members have the appropriate
technical expertise needed to perform their roles

Technical environment enables Agile development • System design supports iterative delivery
• Technical and program tools support Agile

Program controls are compatible with Agile • Critical features are defined and incorporated in development
• Non-functional requirements are defined and incorporated in

development
• Agile teams maintain a sustainable development pace

Organization environment
Organization activities support Agile methods • Organization has established appropriate life-cycle activities

• Goals and objectives are clearly aligned
Organization culture supports Agile methods • Sponsorship for Agile development cascades throughout the

organization
• Sponsors understand Agile development
• Organization culture supports Agile development
• Incentives and rewards are aligned to Agile development methods

Organization acquisition policies and procedures
support Agile methods

• Guidance is appropriate for Agile acquisition strategies

Source: GAO. | GAO-24-105506
aA user story is a high-level requirement definition written in everyday or business language; it is a
communication tool written by or for users to guide developers though it can also be written by
developers to express non-functional requirements (e.g., security, performance, quality). User stories
are not vehicles to capture complex system requirements on their own. Rather, full system
requirements consist of a body of user stories. User stories are used in all levels of Agile planning
and execution. They capture the who, what, and why of a requirement in a simple, concise way, often
limited in detail by what can be hand-written on a small paper notecard. While Agile programs may
use different terminology, such as product backlog items, for the purposes of this guide we use the
term user story throughout.

Chapter 3: Agile Adoption Best Practices

Page 30 GAO-24-105506 Agile Assessment Guide

Team dynamics are critical for the success of Agile methods. Practices
include ensuring that team composition supports Agile methods, work is
prioritized to maximize value to the customer, and repeatable processes
are in place.

Agile teams should be self-organizing, meaning they are empowered to
collectively own the whole product, drive their work forward, and decide
how work will be accomplished. The Agile teams’ duties should be well
defined (e.g., covering lower-level decision making and team formation).
The teams’ authorities should highlight the importance of cross-
functionality to allow for autonomy and team stability. The more
encouragement and latitude the team is given, the better it can address
technical issues in creative ways. If teams are not self-organizing or self-
managing, the teams may be inefficient, causing program cost increases
and schedule slips.

The Agile team should be structured to allow for its own autonomy so that
it need not rely on outside teams to complete its work. Team members
should have cross-functional skills that allow them to be capable of
performing all of the work rather than a single specialty. Collectively, the
team should have all the skills necessary to perform the work and
represent the various sections of the organization that touch on software
development, such as business subject matter expertise, quality
assurance, and cybersecurity.30 In addition, the team should be integrated

30If operating in a government setting, the Agile team, or a subset of it, may be
contractors. Contracting for Agile development often involves contractor support services
which can impact certain functions that the contractor can perform. See for example, FAR
§ 2.101 (defining inherently governmental function). However, whether using government
employees or contractor employees, each Agile team should consist of personnel with all
of the necessary skill sets. When drafting the terms of a contract for Agile development,
the program should work closely with contracting personnel (e.g. contracting officer and
contract specialist) to promote autonomy while ensuring compliance with federal
acquisition regulations. Contracting best practices related to Agile processes are
discussed in more detail in chapter 6.

Team Dynamics and
Activities

Team composition
supports Agile methods

Agile teams are self-organizing

Chapter 3: Agile Adoption Best Practices

Page 31 GAO-24-105506 Agile Assessment Guide

with other areas in the program office.31 Specifically, the team can include
contract personnel, designers, analysts, developers, and testers who,
when working together, are able to decompose high-level descriptions of
features that need to be accomplished into appropriate user stories and
then work to identify logical iteration stopping points for testability. This
level of expertise on the team allows it to solve most problems. If a team
does not have the requisite skills, it will be reliant on other teams that may
have other responsibilities, thus delaying progress on the product.

Source: GAO. I GAO-24-105506

The roles for an Agile team can vary based on the Agile methods being
applied; however, certain roles are similar in all Agile environments, such
as the developers, product owner, team facilitator, and subject matter

31See GAO, IT Workforce: Key Practices Help Ensure Strong Integrated Program Teams;
Selecting Departments Need to Assess Skill Gaps, GAO-17-8 (Washington, D.C.: Nov.
30, 2016), for a more in-depth discussion of an integrated program team including critical
success factors. GAO also issues a biannual series on cross-functional teams at the
Department of Defense. For more information see GAO, Defense Management: DOD Has
Taken Initial Steps to Formulate an Organizational Strategy, but These Efforts Are Not
Complete, GAO-17-523R (Washington, D.C.: June 23, 2017).

Case study 2: Cross-functional teams, from Defense Management,
GAO-18-194

The cross-functional team approach is thought to, among other things, advance a
collaborative culture to address critical objectives and outputs. GAO research identified
eight broad categories of leading practices associated with effective cross-functional
teams: (1) open and regular communication, (2) well-defined team goals, (3) inclusive
team environment, (4) senior management support, (5) well-defined team structure, (6)
autonomy, (7) committed cross-functional team members, and (8) an empowered cross-
functional team leader.

In February 2018, GAO reported that DOD had established a cross-functional team to
address the backlog on security clearances. GAO also reported that DOD developed
draft guidance for cross-functional teams that addressed six of seven required statutory
elements and incorporated five of eight leading practices that GAO identified for
effective cross-functional teams. GAO noted that DOD’s guidance for cross-functional
teams was critical to their consistent and effective implementation across the
department. In addition, GAO reported that this guidance would help ensure that such
teams were provided with leadership support and resources and it further promoted
collaboration across the department. GAO found that fully incorporating leading
practices would help the teams be consistent and effective in addressing DOD’s
strategic objectives.

GAO, Defense Management: DOD Needs to Take Additional Actions to Promote
Department-Wide Collaboration, GAO-18-194 (Washington, D.C.: February 28, 2018).

https://www.gao.gov/products/GAO-17-8
https://www.gao.gov/products/GAO-17-523R
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-18-194

Chapter 3: Agile Adoption Best Practices

Page 32 GAO-24-105506 Agile Assessment Guide

experts.32 Figure 3 shows the relationship of the Agile team and
customers.

Figure 3: Relationship between the Agile Team and Customers

A team facilitator is a person who has the explicit role of conducting a
meeting and provides indirect or unobtrusive assistance, guidance, and
supervision. Their primary focus is creating a process that helps the
group achieve the intent of the meeting and takes little part in the
discussions on the meeting’s topics.

A product owner is accountable for ensuring business value is delivered
by creating customer-centric items (typically user stories), ordering them,
and maintaining them in the backlog. The product owner defines
acceptance criteria for user stories. The product owner’s duties typically
include clearly expressing the backlog items, prioritizing the backlog items
to reflect goals and missions, keeping the backlog visible to all, optimizing
the value of development work, ensuring that the developers fully
understand the backlog items, and deciding when a feature is “done.” A
product owner should be available to the team within a reasonable time
for both decision-making and empowerment.

32See the best practice entitled “Staff are appropriately trained in Agile methods” in this
chapter for further discussion of the training and technical expertise needed for a team.
Chapter 6 also elaborates on subject matter expertise necessary for the effective
contracting of Agile development.

Chapter 3: Agile Adoption Best Practices

Page 33 GAO-24-105506 Agile Assessment Guide

A subject matter expert is knowledgeable about the process or systems
under development and can advise them team about them.

A developer is responsible for organizing and creating the software. The
developer works with other team members to deliver needed software
and adjusts to changing customer needs.

A customer is someone who requires the product or service. The
customer may or may not be a user. The customer is an integral part of
the development and has specific responsibilities depending on the Agile
methods used.

Agile Teams
Agile teams are small, empowered, and self-motivated. Usually teams are 5-9 people,
including developers, product managers, and subject matter experts who are
dedicated to accomplishing the overall project goal. Teams work in cycles to deliver
working software. While the different roles across the team may be a mix of contractor
and federal personnel, it is imperative that the product owner be a federal employee
due to their role and responsibilities for the project.

Source: GAO. I GAO-24-105506

Team stability, where team members are dedicated to the team and do
not move in and out of the team, is important to ensure consistent
productivity. Frequently shifting resources within a team, or between
teams, can undo learning and shift team dynamics and skills, thereby
diminishing the team’s ability to meet commitments. The level of
commitment of each team member and stakeholder is based on the
needs of the program and should be discussed on a case-by-case basis.
For example, involvement of a database administrator may only be
required on a part-time basis when the team is working on user stories
that require access to, or may indirectly impact, a database. Whether a
team member is fully or temporarily dedicated to a particular team, all
staff should be available when needed, to the extent possible.

In an Agile environment, the developers work daily with stakeholders,
including the product owner. The product owner is the authoritative
customer representative who manages the prioritization of the
requirements (e.g., user stories) and acceptance criteria for those
requirements, communicates operational concepts, and provides
continual feedback to the developers as a representative of the

The role of the product owner
is defined to support Agile
methods

Chapter 3: Agile Adoption Best Practices

Page 34 GAO-24-105506 Agile Assessment Guide

customer.33 The product owner also defines the acceptance criteria for
stories and ultimately decides if those criteria have been met.34 A product
owner should understand the business and strategic values of the
organization and possess subject matter expertise related to the business
need in order to draw alignment with the vision of the product. Linking the
need, vision, and product includes ensuring that prioritized requirements
are evaluated and implemented in a timely manner and that the backlog
is managed.

If there is not a clearly identified product owner who is the authoritative
customer representative and is responsible for managing requirements
prioritization, communicating operational concepts, and providing
continual feedback, the developers may not be sure which requirements
are priorities if they receive conflicting information. This uncertainty can
result in delays to delivering high-priority features and deployment of the
overall system. If the product owner is not a dedicated resource, the
developers may find that person unavailable to answer questions when
needed, and, if questions are not addressed in a timely manner, the
developers may make assumptions in order to continue with its
development and meet its commitments. If the team assumptions do not
match the expectations of the product owner, significant rework may be
necessary. This can slow down the development process.

The product owner role and responsibilities can be fulfilled in more than
one way. For example, some organizations may delegate these
responsibilities through multiple product owners, each of whom has clear
boundaries and a clear division of duties, while other organizations may
establish a core group of business officials to make key programmatic

33Requirements are typically referred to in an Agile environment as user stories, features,
or epics, depending on the target audience for level of detail of the work. Chapter 5
elaborates on how we use the term ‘requirements’ throughout this guide and best
practices associated with requirements development and management, including the role
of the product owner in those processes. In this guide, we use the term ‘requirement’ to
refer to a condition or capability needed by a customer to solve a problem or achieve an
objective. Requirements will be used to refer to all development work since specific
terminology (e.g. epic, capability, feature, sub-feature) may be unique to a specific
organization. See chapter 5 and appendix II for more detail.

34As discussed subsequently in chapter 6, when using a contract for an Agile
development effort, the contract must provide a flexible structure that will allow iterative
development to meet the desired mission outcomes, while also allowing for adaptation of
software requirements as the development continues and are within the specifications of
the system. Nothing in this guide is intended to suggest that a product owner has legal
authority to undertake actions or make decisions that are reserved for contracting officers
or contracting officer representatives.

Chapter 3: Agile Adoption Best Practices

Page 35 GAO-24-105506 Agile Assessment Guide

decisions, with a single product owner interacting with the Agile teams on
behalf of the group. Regardless of the structure, the product owner should
be empowered and their responsibilities should be well defined (e.g., the
product owner’s availability to the team). From a functional perspective, a
product owner must be empowered to prioritize decisions about
development. Without the ability to reprioritize work, the development
process can slow down due to waiting on others with competing
responsibilities to consider and respond on behalf of the business.

Since the product owner represents the customer, they routinely interact
with key stakeholders to weigh the value of each requirement and
establish work priorities for the developers. The developers may choose
to interact directly with key stakeholders if the Agile team deems that it is
warranted. However, the team should ensure that functionality is
prioritized by the product owner and not by the stakeholders, and that this
additional coordination does not impact development productivity.35

In order for a product owner to be effective, the number of Agile teams
assigned to an individual product owner should be limited to allow time to
interact with and complete duties with all teams, stakeholders, customers,
and users they support. Without maintaining contact with both the
developers and the customers, a product owner may not be able to
represent what the customer priorities are and may misrepresent them to
the developers. This could result in a decreased value from the system if
the wrong features are given priority in the backlog or cause schedule
delays if critical features were not developed. The following illustrates the
importance of collaboration in resolving bottlenecks or avoiding them in
the first place.

35While the goal is to limit interruption of the team’s workflow, user centered design may
increase the effectiveness of the final product and reduce rework. Including users and
designing for them early and often is an important consideration for the product owner
during a program’s entire life cycle.

 An agency’s structure can
slow down the development

process if developers have
questions about a requirement

after work has started, they need to
be able to ask the product owner for

clarification. If the development team
can’t reach the product owner or aren’t
allowed to contact the product owner
directly, there can be a bottleneck
in development.
In more complex agency structures,
the product owner may not have the

ability to make key decisions, such
as approving a change to the

requirement priorities. In that
case, the developers

would be

unable to work until the ap-
propriate managers give the
approval to proceed.

Agencies can refine their policies
and procedures to better support
Agile development and further collabo-
ration between the developers and the
product owner.

Streamlining agency processes encour-
ages collaboration and allows develop-
ers to provide more frequent software
deliveries. For example, one way to
free up a product owner is to limit
the number of Agile teams
the product owner
works with.

BOT
CK

S

SOFTWARE

Collaboration
is an important

part of Agile software
development. It is especially

important between the product owners,
who set the requirements, and the developers

who implement them. If an agency isn’t set up to
support Agile development this collaboration can be difficult.

TLE
NE

STRUCTURE
POLICY

PROCESS

Source: GAO analysis of agency and private sector information (data);
Vectormine/stock.adobe.com (images). | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 37 GAO-24-105506 Agile Assessment Guide

Case study 3: Product owner, from Immigration Benefits System,
GAO-16-467

In 2016, GAO found the U. S. Citizenship and Immigration Services’ (USCIS)
Transformation program experienced many challenges due to product owners being
stretched among multiple development teams. Product owners for the primary
Transformation program system, the Electronic Immigration System (ELIS), were
responsible for more than four development teams, and, at times, up to twelve teams.
Consolidated release assessments, prior product owner testimony, and GAO
observations identified that not having a dedicated product owner presented many
difficulties for the ELIS development teams. For example, one product owner stated
that it was a challenge to accommodate more than one team and she had to stagger
her time between the teams to support sprint planning and maintain meaningful
dialogue with the team. Additionally, consolidated release assessments indicated that
product owners did not attend 21 percent of sprint planning meetings. Product owner
availability was an issue voiced by development team members and also observed by
GAO during standup meetings and sprint planning.
The more development teams a product owner is responsible for, the less time the
product owner is able to spend with each team. Consequently, this can impact a
product owner’s effectiveness in performing his or her assigned duties. Furthermore, as
we reported in 2016, the program faced challenges in completing work within
committed time frames and product owner availability may have been a contributing
factor. According to USCIS guidance, lack of inclusion and transparency with the
development team’s decision making and processes can result in a disengaged
product owner, or one that makes decisions without adequate consideration of
challenges faced by the team.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 7, 2016).

Source: GAO. I GAO-24-105506

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-16-467

Chapter 3: Agile Adoption Best Practices

Page 38 GAO-24-105506 Agile Assessment Guide

User stories have become a common method of defining small items of
work that can be completed by team members inside of an iteration. A
user story defines who needs the requirement and why. Although some
methods do not explicitly require the use of user stories (e.g. Kanban),
they provide additional information beyond the high-level requirement
description to help Agile teams work to meet the requirement. Regardless
of the form used to communicate low-level requirements, it is important
that the team knows who the requirement’s customer is and why the
requirement is needed. While Agile programs may use different
terminology when they refer to user stories, such as product backlog
items, for the purposes of this guide we use the term ‘user story’
throughout to describe a small segment of work, described from the
user’s perspective, that can be completed in a single iteration and is
determined by the product owner and developers.

The Agile team constructs a general outline for developing the user
stories that comprise an iteration. A user story’s focus is on the value
delivered to the user, often defines who the user is, what is being
developed for that user, and why there is a need for the functionality.
However, striking a balance between too much and not enough detail can
be challenging: Each user story should provide enough detail to allow
developers to estimate the user story’s complexity, but not so much
information that there is little room for discussion between the product
owner and the developers around the intent of the user story. Clearly
establishing the components to include in the user story can help strike
this balance. Establishing a common structure for the user story helps
ensure consistency and can help prevent delays when product owners
work with multiple teams or teams are reorganized.

The product owner determines the business value of each user story in
consultation with the developers by refining the size, defining the criteria
for acceptance, and establishing when the user story will be considered
done. The value of a user story should be reevaluated based on the
current needs of the organization to ensure the greatest return on
investment. The practice of backlog refinement, along with a discussion of
acceptance criteria and a definition of done is covered in greater detail in
chapter 5.

Work is prioritized to
maximize value for
the customer
Agile teams use user stories to
define work

User and human centered design
User centered design focuses software
development on the needs of the software’s
actual end users with the goal of delivering
value to end users. Examples of end users
include applicants for benefits, call center
workers, and case workers, among others.
Designing with end users and for their benefit
helps reduce project risks.
In user centered design, work is identified
and prioritized in close and regular
collaboration with end users and is informed
by any technical constraints. The team and
end users regularly review the work, as it is
being performed, and the development work
on the new software is not considered
finished until those end users agree that their
needs have been met. To that end, the goal
of the software is to deliver value to end
users, thus testing with end users should
always be prioritized amid technical or time
constraints.
Similar to user centered design, human
centered design focuses software
development on understanding problems
users face in order to validate that the
products or services are usable. To that end,
usability testing differs from user acceptance
testing. User acceptance testing checks for
functionality (e.g., the presence of an error),
while usability testing checks for ease of use
through user behavior (e.g., what the error
is). Also, user acceptance testing usually
happens at the end of a design process while
usability testing happens throughout the
process. It is important to include both types
of testing in human-centered design and
software development, not just traditional
user acceptance testing.
Source: GAO analysis of GSA
information. | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 39 GAO-24-105506 Agile Assessment Guide

INVEST

The acronym INVEST defines the characteristics of a quality user story: it should be
“I” ndependent (of all others),”N” egotiable (not a specific contract for features), “V”
aluable (or vertical), “E” stimable (to a good approximation), “S” mall (so as to fit
within an iteration), and “T” estable (in principle, even if there is not a test for it yet). If
the user story fails to meet one of these criteria, the team may want to reword it, or
even consider a rewrite.

Source: GAO. I GAO-24-105506

The developers should use relative estimation, which compares the
current work with work of similar size and complexity, to determine how
much complexity a new user story represents. Relative estimation
enables teams to maintain a sustainable software development pace and
predict work commitments. The team should size user stories relative to
one another, assess the complexity of work based on input from the
product owner, refine user stories and estimates over time, and use prior
estimates to inform future estimates. If teams are not using relative
estimation to compare current size and work estimates to historical
completed work, the team may underestimate or overestimate the
complexity and time necessary to complete the user story.

Relative estimation

In software development, an estimate traditionally consists of a quantified evaluation
of the effort necessary to carry out a given development task; this is most often
expressed in terms of duration. Relative estimation is one of several types of
estimation used by Agile teams. It consists of estimating tasks or user stories, not
separately and in absolute units of time, but by comparison or by grouping of items of
equivalent difficulty. Relative estimation, consistent with estimation in units other than
time, avoids some of the pitfalls associated with estimating in general: seeking
unwarranted precision, confusing estimates for commitments. For example, if a team
uses a complexity point scale with the values [1, 2, 3, 5, 8, 13, 21], it should not be
assumed that an 8 point backlog item will require four times as long as a 2 point one
(although, if that is the norm the team has agreed upon, it could); rather, it will be
more than a 5 point and less than a 13 point item. Also, because estimates are team-
and domain-specific, there is little utility in attempting to use them for cross-team
performance or productivity.

Source: GAO. I GAO-24-105506

When estimating, the team should consider potential factors that can
increase the complexity of the work. For example, a piece of functionality
that requires passing interface testing before it can be accepted might
prove challenging when the team factors in coordination and access to

Agile teams estimate the
relative complexity of user
stories

Chapter 3: Agile Adoption Best Practices

Page 40 GAO-24-105506 Agile Assessment Guide

other systems. Team members are providing only a best estimate based
on experience to date and will not fully know the complexity of the user
story until the work has begun. Accordingly, program management should
remember that estimates for the program are likely to change with each
iteration. Practices such as affinity estimation can help to identify factors
that affect the complexity of a user story.36 Well-defined acceptance
criteria can also help teams estimate a user story’s complexity. Less well-
defined user stories will carry more risk and uncertainty around size
estimates. Additionally, if teams are not estimating user stories
consistently, the teams may be committing to too much work, leading to
user stories lasting longer than one iteration and team burnout.

The team continually revises the estimates of the program as they learn
more about the business priorities and as a user story increases in
priority. However, once an iteration has begun, sizing estimates should
remain unchanged so that the team can examine variances between
estimated and actual work accomplished during the iteration. Estimation
is a team-specific activity and estimates for one team should not be
compared against estimates for another. For example, different
development teams on one program may have a different idea of what
the relative size of work is.

To prioritize a user story, the product owner determines the business
value of each user story based on the needs of the users, stakeholder
priorities, and factors such as its risk level, dependent relationships,
frequency of use, alignment with the vision of the product, security
requirements, expected return on investment, and changes in
performance as the team learns. The organization and program should
have a shared understanding of what value means in terms of how much
a feature satisfies strategic priorities. Identifying and measuring value, as
with other Agile practices, requires constant collaboration. Agile teams
should pull work from a prioritized backlog, providing frequent deliveries
of software to the customer with immediate value to the user. A lack of
traceability between different levels of backlogs and program planning
artifacts could lead to overlooking user stories or features that are critical
to the program due to their high value to the customer or key
dependencies that those user stories or features might have with other
aspects of the system. Further, a lack of understanding or insight into the
methods used to measure value for user stories could cause a disconnect

36Affinity estimation is a consensus-based technique to estimate the relative effort of work.
This term is further defined in appendix II.

Requirements are prioritized in
a backlog based on value

Chapter 3: Agile Adoption Best Practices

Page 41 GAO-24-105506 Agile Assessment Guide

between the users and developers and allow delivery of features that do
not maximize the value.

The value of the work accomplished by Agile teams should be tracked
and monitored. Once software has been delivered, the product owner
may survey users and customers to measure satisfaction with each
software release and track the accuracy of initial value estimates.

Value-driven feature development

One way to gauge the value of work is to measure how often a feature of a system is
used by the users. While there may be situations where a critical feature is necessary
but used infrequently, often the product owner should be focused on developing
features that will actually be used on deployment and therefore are of immediate
value. As with any measure, setting a target for usage beforehand can serve as a
benchmark to compare against on deployment.

Source: GAO. I GAO-24-105506

The team should provide an ongoing assessment of value expected
versus value delivered. In doing so, the organization has another
measure of progress beyond traditional cost or schedule considerations.
Without clearly prioritizing work, the developers could work on features
that are not “must haves” to the customer, resulting in the delivery of
features that may not be used and might contribute to schedule and cost
overruns.

MoSCoW

Many Agile methods use the acronym MoSCoW to classify user stories as “must
have,” “should have,” “could have,” or “would like to have” for prioritizing the backlog.

Source: GAO. I GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 42 GAO-24-105506 Agile Assessment Guide

Case study 4: Release road map, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS) modified
its acquisition procedures to allow for an ongoing assessment of progress, and
indirectly the value of work accomplished, via a release road map. DHS guidance
stated that the release road map is to be submitted to the Acquisition Review Board
prior to acquisition decision event 2B when full program funding occurs. During lower-
level technical reviews, exit criteria for reviews required the development team to follow
the release road map and make adjustments that supported the successful completion
of requirements defined at the acquisition decision event 2B. DHS supplemented these
requirements with guidance on constructing a road map, including a discussion on how
a program can sequence its road map for learning, risk, and economic value.
Within DHS, GAO reported that it reviewed a road map for one development module of
the U.S. Immigration and Customs Enforcement (ICE) Student and Exchange Visitor
Information System (SEVIS) program. This road map listed areas for development in
the order they were intended to be developed and identified the associated business
capabilities. The business capabilities identified in the road map aligned with the sub-
capabilities listed in the program’s operational requirements document. Examples of
business capabilities in the road map that were also sub-capabilities identified in the
operational requirements document included:

• create nonimmigrant record (including supporting forms),

• align nonimmigrant eligibility information with unique nonimmigrant,

• update nonimmigrant biographical information, and

• add/update dependent information.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Source: GAO. I GAO-24-105506

Because the value of requirements is constantly fluctuating based on the
needs of the program and the organization, the product owner
reevaluates requirements frequently to reprioritize if necessary as a result
of team discussions and user feedback. Doing so allows users to receive
the most important functionality (e.g. those features that provide the
greatest value) first. Likewise, this practice usually provides the biggest
return on investment for the work performed.

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 43 GAO-24-105506 Agile Assessment Guide

Story board mapping (also known as user story mapping)

Story mapping, a concept first formulated by Jeff Patton in 2005 in an article entitled
“It’s All in How You Slice It,” consists of ordering user stories along two independent
dimensions.a The map arranges user activities along the horizontal axis in rough
order of priority (or “the order in which you would describe activities to explain the
behavior of the system”). Moving down the vertical axis represents increasing
sophistication of the implementation. Working through successive rows fleshes out
the product with additional functionality. One intent of this practice is to avoid a failure
of incremental delivery, where a product could be released that is composed of
features that, in principle, are of high business value but are unusable because they
are functionally dependent on features that are of lower value and, therefore,
deferred to future releases.

Source: GAO. I GAO-24-105506
aPatton, Jeff. “It’s All in How you Slice It.” Better Software, (Jan. 2005), accessed July 27, 2020
https://www.jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf.

To successfully meet the demands of rapid development, Agile teams use
repeatable processes to establish consistency, thus providing a baseline
against which improvements can be evaluated and adapted. Repeatable
processes are not to impede the creativity of the Agile team by repeating
the same steps in the same way every time the team operates. Rather,
they characterize how to approach the Agile cadence. Because iterations
are short (often 2-4 weeks in duration), consistency is important as
practices will be repeated dozens of times a year.

Automation of repeatable processes allows software components that are
added or modified to be continuously integrated into the system. With
short iterations in which to develop working software, integration should
be frequent; thus, continuous integration using automation ensures that
software handoffs between the various stages of development and testing
are performed in a reliable, dependable manner.37 Without continuous
integration using automation, reliable and dependable software handoffs
may not occur. Each stage of the continuous integration process should
include automated tests of both functional and non-functional
requirements with the scope of automated testing tracked and monitored
based on established expectations. Without automated build and testing
tools, the program may experience challenges in delivering the product
on time and may have a limited assurance of product quality. Because
automation depends on early investments in the technical environment,

37Due to the continuous integration of a code base in Agile, it is important for the program
to have a mature integrated version control system in place. This is a critical tool to enable
teams to work together and maintain configuration control over the code base.

Repeatable
processes are in
place

Agile programs employ
continuous integration

https://www.jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf

Chapter 3: Agile Adoption Best Practices

Page 44 GAO-24-105506 Agile Assessment Guide

its success is heavily dependent on the program process best practice,
“Technical environment enables Agile development”.

Adherence to coding standards and the use of automated and manual
testing are necessary for improving the quality of code that is ultimately
inserted into the continuous integration build process. Software with a
large number of defects or an inefficient structure not only affects system
performance, but it also forces the developers to spend time and effort to
repair defects. While many methods are available for assuring code
quality, there will always be some code inefficiencies or redundancies that
ultimately limit system performance. These deficiencies can stem from
time constraints, an unsustainable development pace, undisciplined
coders, or other reasons. The accumulation of these deficiencies over
time is called “technical debt” and can present obstacles to an Agile
program if not properly managed.38 For example, as a code base grows,
additional functions will rely on the deficient code, causing a degradation
in overall system performance. Moreover, as the interest incurred on
technical debt continues to rise, teams will devote more time to cleaning
up errors instead of producing new features.

Technical debt can also be incurred mindfully, when it is more important
to hypothesize the way a module will work in the eventual system (so that
interfaces can be tested, for example) than to wait for the requirements
for that part of the system to be written in detail. Eventually, both
intentional and unintentional technical debt can increase to the point
where the code base no longer functions properly and it becomes
necessary to rewrite the entire code. Code quality should be tracked and
monitored based on established expectations. Table 5 discusses
methods that can be used to help assure code quality.

38Although we only discuss technical debt accrued as a product of development, technical
debt may also be generated by factors outside of the team’s immediate control. For
example, program vision and architecture may all contribute to technical debt.

Mechanisms are in place to
ensure the quality of code
being developed

Chapter 3: Agile Adoption Best Practices

Page 45 GAO-24-105506 Agile Assessment Guide

Table 5: Manual Coding Quality Assurance Methods

Method and description Strengths Limitations
Development is test driven: test cases
are written before any code has been
produced and only enough code should be
produced to address the test case.
Subsequent test cases and code are added
via a cyclical process until the user story is
finished.

• Continuous delivery of working
software

• Errors easier to identify and correct in
smaller batches of code

• Erroneous code does not proceed past
development stage

• Automation of testing can be
incorporated

• Strength and accuracy of code
depends on developer or tester who
writes the tests

• Does not ensure execution of tests in
the build process if test cases are not
part of the automated test suite

• Does not ensure adequate
maintenance of the test suite over time

Pair programming: Developers work in
pairs.

• Working software provided more
quickly

• Working software has few defects
• Raises skill level across the team

• Technique must be learned to be
effective

• Success can be hampered by
incompatible dynamics of the pair

• Appearance of not effectively using
resources

Refactoring: A portion of time is set aside
in each iteration to update and improve the
code.

• Addresses technical debt that accrues
• Promotes collective ownership
• Promotes understanding of the code

• Does not remedy systemic issues that
lead to technical debt

• Can be challenging to gain
management support

Code quality and peer review: A team
member who is not the developer of the
code reviews portions of the code base to
assess its quality and adherence to defined
coding standards.

• Catches errors not conceived by the
initial software developer

• Provides added assurance that code
will function as intended when
deployed

• Enhances collective feeling of
ownership of the code base

• Code coverage is limited
• Diverts resources from other efforts
• Is time consuming
• Identifies coding issues after the fact

Source: GAO analysis of Software Engineering Institute literature and other material. | GAO-24-105506

In addition to repeatable technical practices, there are repeatable
business practices that increase the likelihood a team will succeed when
using Agile methods for its software development. Specifically, teams can
meet daily to coordinate the work, demonstrate working software to the
product owner either during or at the end of an iteration to verify it meets
customer and user needs, or participate in a retrospective meeting.39

The daily standup meeting is to discuss any barriers encountered in
completing the work; it is not intended to provide a status update to

39A user is the person or group that makes use of products and services procured by
business sponsors or customers.

Agile teams meet
daily to review
progress and discuss
impediments

Chapter 3: Agile Adoption Best Practices

Page 46 GAO-24-105506 Agile Assessment Guide

management.40 Its purpose is to help the team gauge if it is on track to
meet the iteration goals and adjust as necessary, while holding team
members accountable. Daily meetings usually discuss these three topics:
yesterday’s accomplishments toward the iteration goals, today’s planned
work to advance the iteration goals, and any impediments to achieving
the iteration goals that need to be removed. The larger purpose of the
discussion is to help a team meet its stated goals for an iteration and
increase the flow of work.

Without the daily standup meeting, team members may not be held
accountable for their work. In addition, duplication of work could occur, or
work may not get accomplished because of a lack of communication and
understanding of who is doing what for the program. Without daily
standup meetings, the team might also not identify impediments, which
may result in rework or schedule delays.

Managers can observe the daily meeting and consider actions they might
take to help remove team impediments, but the daily meeting should not
become a status update for management. If used as a status update for
management instead of focusing on progress and impediments, the
meeting could last too long. The meeting is also not a place to solve
problems or hold discussions with stakeholders. Instead, it is a place to
decide what conversations (with what participants) need to take place that
day. Teams can invite subject matter experts or other business
stakeholders to the meeting, as needed, to answer questions regarding a
specific user story they intend to work on that day. The following
illustrates the how the daily standup meeting brings the team together to
ensure progress.

40This practice comes from the Scrum method and has been adopted by many other Agile
methods.

Agile development teams commonly hold daily meetings, often with
everyone standing up to encourage brevity. The meeting’s intended
purpose is to bring the team together, briefly, to discuss progress
and impediments to the team’s goals.

The team facilitator steers the
meeting, keeping team members
on track. Upper management and
other stakeholders, may be able
to observe the standup meeting;
however, they should not partici-
pate because the meeting should
not be used as a reporting tool.
If interruptions occur, the team
facilitator can suggest that they
schedule a separate meeting
to discuss any issues in greater

DAILY

detail. A stand up meeting has several
benefits. It helps build team cohesion,
it brings clarity to the team’s remaining
work items, and it holds team
members accountable to
one another.

	 ARE THERE ANY IMPEDIMENTS?

	 WHAT DID YOU DO YESTERDAY?

	 WHAT DO YOU PLAN TO DO TODAY?

STANDUP

Source: GAO analysis of agency and private sector information (data);
Topvectors/Vectormine/stock.adobe.com (images). | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 48 GAO-24-105506 Agile Assessment Guide

Teams should demonstrate the latest version of the software for the
product owner and other stakeholders at regular demonstrations, or as
functionality has been completed. These demonstrations offer an
opportunity for stakeholders to validate that teams are building the right
product, help inform the priorities for the team moving forward, and offer a
key opportunity to discover new requirements that can be translated into
user stories and obtain user feedback. During a demonstration,
stakeholders review and react to the portion of working software being
demonstrated, rather than to the whole system. In order for a
demonstration to be useful, all participants must be engaged and the
sample software should be depicted in a realistic setting. Teams should
not spend a significant amount of time preparing for a demonstration, as
the focus of this time is to demonstrate working software and obtain
feedback. If regular demonstrations are not performed, the team may not
be able to identify portions of the software that need improvement or
modifications to provide the anticipated functionality. Moreover, without
regular user feedback, the team can begin to lose focus on what drives
value to the user; may miss changes in the nature of the problem; or miss
an opportunity to collaborate with and understand the user.

At the end of each iteration, the team should hold a retrospective meeting
to reflect on what went well and what could be improved for the next
iteration.41 It is an effective tool to enable continuous process
improvement. The findings of the retrospective are determined and
implemented by the team. For example, although retrospectives focus on
process improvements instead of product improvements, the team can
include action items from the retrospective as user stories in the backlog
and track their implementation. If a retrospective is not held at the end of
each iteration, the team may not reflect on or improve the efficiency and
effectiveness of its work processes, thereby impacting the timely delivery
of a high-quality product. These retrospectives differ from end-of-project
retrospectives in that they provide the opportunity to improve in the next
iteration, not the next project.

At the program level, best practices address training staff in Agile
methods, establishing a technical environment that facilitates Agile
development, and implementing controls that are compatible with Agile.

41If following the Kanban method, retrospectives should be held at an agreed-on interval
because work is not organized by iterations.

Agile teams perform regular
demonstrations

Agile teams perform regular
retrospectives

Program Operations

Chapter 3: Agile Adoption Best Practices

Page 49 GAO-24-105506 Agile Assessment Guide

All members of a team using Agile methods need to have appropriate
training, since the techniques used are different from those used for
Waterfall development programs. Team members and all staff who will be
actively developing software, supporting software development activities,
or involved in the acquisition process using Agile should be trained in the
specific Agile method they will be using in order to have a common
understanding about the processes to be used. Training in specific Agile
methods includes the Agile policy and procedures documented by the
organization. Without training, there may be a lack of common
understanding in the program about the Agile methods to be used.

In addition, training requirements should be tracked and monitored for all
team members. Refresher training should occur whenever there are any
changes to the development or acquisition process, such as the use of
new programming languages, applications, compliance requirements,
coding, or security standards. If Agile is adopted throughout an
organization, training of all team members should be considered as part
of the organization’s larger workforce training or strategic human capital
management efforts. Without effective training based on a strategic
human capital analysis, the program will likely face challenges in helping
to ensure that the required capabilities and mission value will be delivered
in a timely and cost-effective manner.

Staff continue developing
expertise in Agile

Program staff are trained in
Agile methods

Chapter 3: Agile Adoption Best Practices

Page 50 GAO-24-105506 Agile Assessment Guide

Case study 5: Focused training, from U.S. Courts, GAO-22-105068

In July 2022, GAO reported on its review of IT management at the Administrative Office
(AO) of the U.S. Courts. Among its findings, GAO reported that AO minimally
implemented three selected leading practices associated with the training and
development of the workforce. For example, although AO enabled all its staff to take a
variety of courses, including IT-focused training, it lacked an established training focus.
In addition, although AO tracked employee training to ensure that they received
appropriate training and certifications, AO did not ensure that employees completed
required IT security training. Finally, AO did not perform any assessment of staff
training to determine how it contributed to improved performance and results.

AO officials stated that the agency had not previously established an agency-wide
training program focused on IT staff because, as part of the agency’s federated
approach for managing its IT workforce, each department is responsible for managing
the training and development of its own staff. However, none of the departments had
established training programs for their IT staffs. AO officials attributed this to the
departments addressing training on an individual or project basis, rather than for their
respective IT workforces as a whole. Without an established training program that
identifies required and recommended training for all IT staff, as appropriate, AO cannot
ensure that its training and development efforts addressed all skill gaps that the IT
workforce may have.

Agency officials also stated that, at the end of fiscal year 2021, the AO Technology
Office requested and received approval to begin enforcing compliance with annual IT
security training for all staff. The officials further stated that, as of May 2022, the agency
was piloting this enforcement mechanism and expected it to be in place for all staff by
the end of June 2022.

According to AO officials, they did not perform any formal assessments of staff training.
The officials stated that department and office managers may evaluate the
effectiveness of training during individual performance management discussions.
However, AO’s performance management process did not require such an evaluation,
and the agency did not provide any documentation demonstrating that such evaluations
were completed. Until AO collects and assesses performance data (including
qualitative or quantitative measures, as appropriate) to determine how the training
program for IT staff (once implemented) contributes to improved performance and
results, the agency may be limited in its knowledge of whether the training program is
contributing to improved performance and results.

GAO, U.S. Courts: Action Needed to Improve IT Management and Establish a Chief
Information Officer, GAO-22-105068 (Washington, D.C.: July 28, 2022).

Source: GAO. I GAO-24-105506

https://www.gao.gov/products/GAO-22-105068
https://www.gao.gov/products/GAO-22-105068

Chapter 3: Agile Adoption Best Practices

Page 51 GAO-24-105506 Agile Assessment Guide

Teams using Agile methods should possess the competencies, skills,
knowledge, and abilities needed to perform their role. A program should
consider Agile-centric skills when forming teams. Ideally, team members,
including contract personnel, developers, and testers, should be cross-
functional and together possess all the skills needed to produce working
software, as discussed in the best practice, “Team composition supports
Agile methods.” If team members do not have all the required skills,
programs should ensure that each developer has immediate access to
people with specialized skills in, for example, contracting, architecture,
database administration, software development, quality assurance,
operations, information security, risk analysis, user experience, and
business systems analysis.42 Having qualified staff helps ensure that the
flow of development is continuous.

Further, if software development is performed by contractor support
personnel, program officials should include an evaluation of the
qualifications of the contractor to perform the work as part of the source
selection. For example, in the solicitation, a program may require the
offerors to conduct a technical demonstration of their expertise. An Agile
team needs to have all the appropriate technical expertise, or it could be
delayed in completing its work while waiting on input from knowledgeable
specialists outside of the team. Moreover, if individual team members are
not proficient in the skills necessary to complete the work, then the quality
of the product being developed may suffer, requiring substantial re-work.

42When coordinating with staff outside of the immediate Agile team, programs must
ensure that there is a method for handling inter-team dependencies.

Developers and all other
supporting team members
have the appropriate technical
expertise needed to perform
their roles

Chapter 3: Agile Adoption Best Practices

Page 52 GAO-24-105506 Agile Assessment Guide

Case study 6: Technical demonstrations, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS) offered
guidance for preparing acquisition strategies through its Procurement Innovation Lab.
Webinars offered by the Procurement Innovation Lab on acquisition strategies for Agile
programs discussed the need for interim delivery of software, close coordination
between contractors and program office staff, contract oversight mechanisms that were
tailored to support Agile development, and refined requirements. For example, the
“Transportation Security Administration Agile Services Procurement” webinar discussed
planning, executing, and de-briefing technical demonstrations used to select the
contract recipient, paying particular attention to the value of transparency and
modifying contract oversight mechanisms.

GAO reported that, within DHS, the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program evaluated
contractor qualifications to ensure they had the necessary technical expertise.
According to the program manager, contractor qualifications were evaluated in two
stages; first, by assessing the contractor’s proposal, and second, by conducting a
technical challenge to ensure that contractors could demonstrate the technical skills in
the proposal. According to the instructions included in the request for proposals, this
technical challenge required the contractor to leverage Agile best practices to design,
develop, and demonstrate working software that addressed user stories provided by
the program. Although the instructions stated that contractors were required to follow
Agile methods, the ICE SEVIS program manager stated that the primary goal of the
technical challenge was to assess development skills rather than knowledge of Agile.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Source: GAO. I GAO-24-105506

Planning the design of the system is important in order to understand and
manage the considerations that can enable a loose coupling of
architecture components and to provide architecture to support the Agile
methods and end state for the program. An Agile program should refine
and build out the architecture over time as it learns more about the
system but also allow time to consider system requirements in order to
limit future complexity, rework, and loss of investment. Not allowing time
up front to consider system requirements can increase future complexity,

Technical
environment enables
Agile development

System design supports
iterative delivery

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 53 GAO-24-105506 Agile Assessment Guide

re-work, and unnecessary investment. If the program does not consider
the system architecture during its initial planning and instead relies on
building out the architecture as code is developed, the architecture may
not support the needs of the system when fully operational and require a
complete technical refresh.

Architectural runway

Some programs use the concept of an architectural runway to ensure that the
technical infrastructure, dependencies, and interfaces are clearly understood and in
place to support implementing the near-term software in an operational environment.
The architectural runway is continually extended to meet new and evolving needs in
front of development, which avoids the need for large, upfront architectural design.

Source: GAO. I GAO-24-105506

In designing the system, a loosely structured architecture allows for the
rapid development of modular components in incremental releases. From
an Agile perspective, this allows teams to produce useable code at each
iteration without impacting the larger system, as the architecture provides
the platform for new code to be inserted seamlessly into the operational
environment. In addition, since federal programs may have staff
distributed across multiple locations, it is easier for each team to be
responsible for a module. This module is then loosely coupled with
others, eliminating the need for many point-to-point interfaces that would
require significant communication and collaboration between teams.
Frequent testing and reviews can help ensure that newly developed
components are properly integrated with existing ones. Incremental code
delivery can result in more frequent customer reviews that provide
valuable feedback to the developers. Because customers are reviewing
smaller slices of the system than in a typical Waterfall development, the
staff members participating in an Agile development review are likely to
be different than those in a Waterfall development. If software design and
architecture are not loosely coupled, changes to individual pieces of the
system may require a significant amount of testing of the entire system,
slowing the pace of development and delivery of the product. The
following illustrates the role of continuous integration in bringing together
code for a successful product.

{

; ;

REACT IN REAL TIME
TO UPDATES

As different team members develop features for
a software program, they test them against the
most current version of the entire program, known
as the build. If the developer’s new code passes
the test, it is integrated into the build. If the new
code fails, it’s the developer’s responsibility to fix

the code until it passes.
Instead of merging everything at
once at the end and hoping it all
works together, the team is continu-
ously merging and testing new code.
As the build expands and the code
becomes more complex, continuous
integration reduces risk and allows

developers to catch bugs more quickly to help
deliver product with fewer defects.
Continuously testing and merging code allows
programs to deliver working software to users at
any point in the development.
Collaboration is an important part of Agile
software development. It is especially important
between the product owners, who set the re-
quirements, and the developers who implement
them. If an agency isn’t set up to support Agile
development, this collaboration can be difficult.

CONTINUOUSLY TEST
AND INTEGRATE CODE

DECREASE DEFECTS

DELIVER WORKING
SOFTWARE TO USERS

CONTINUOUS
INTEGRATION
Continuous integration is a key workflow process that
is intended to minimize time and effort needed to
integrated new code from multiple developers.

;

{ {

;

Source: GAO analysis of agency and private sector information (data);
Vectormine/stock.adobe.com (images). | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 55 GAO-24-105506 Agile Assessment Guide

Case study 7: Tools for automated testing and continuous
integration, from Agile Software Development, GAO-20-213

In June 2020, GAO reported that the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program defined its
technical environment to include technical tools for automated testing and continuous
integration. The team process agreement for one development module GAO reviewed
identified technical tools that supported continuous integration and testing within the
project’s technical environment. This included a tool known as Jenkins for continuous
integration and tools known as MUnit and Soap UI for continuous testing. In addition,
the ICE SEVIS Modernization Test and Evaluation Master Plan discussed tools for
helping to ensure code quality, such as an automated code analytics tool to be used to
identify test coverage of code and cybersecurity code vulnerabilities.

The project also defined management support tools in the process agreement.
Specifically, it identified support tools for tracking and knowledge management, such as
JIRA and Confluence. The team process agreement stated that JIRA should be the
main knowledge management tool and that all changes, discussion, and history should
be tracked in each ticket. This process agreement also stated that JIRA should be the
team’s tracking tool with Confluence used to provide transparency.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Source: GAO. I GAO-24-105506

To continually monitor progress, program management and technical
tools may be needed to assist Agile teams with electronically managing
the Agile framework they are using to develop software. The selected
tools should be integrated into the program’s technology environment
(e.g., automated regression testing suites and continuous integration
support tools) and access should be available to all team members and
stakeholders who need the access. These electronic tools can prevent
delays in performing critical tasks. If technical and program tools are not
consistently available to those members of the team requiring access,
then the productivity of developers may suffer and result in increased
costs for development.

Programs sometimes face limited access to the contractor’s tools. This is
based on a perception that providing access could lead to
micromanagement of the developers. This issue should be addressed
early and in the contracts because everyone involved in the Agile
development effort, both government and contractor personnel, should
have access to the data. Given the variety of Agile tools available in the
commercial market, program managers should analyze their current suite

Technical and program tools
support Agile

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 56 GAO-24-105506 Agile Assessment Guide

of program management tools to determine to what extent they are
aligned with Agile principles and practices.

Since Agile methods deliver software frequently, they require a certain
degree of automation to avoid creating lags in the process. For example,
to ensure quality products are produced during a delivery cycle, the
software is integrated and tested frequently—usually daily. This rapid
integration and testing can be labor intensive without the support of
automated tools. Automation also reduces the chance of human errors
and can perform many functions much faster than people can. Programs
not using automated tracking tools could miss key dependencies between
user stories and features. Without automated tools, the program risks
inconsistent implementation of processes across teams, which may
negatively affect product delivery and understanding the program’s
progress.

The program office should identify the mission, architecture, safety-critical
components, and dependencies that ensure that all requirements of a
program are considered, and they should be revisited on a regular
basis.43 Some programs define their components during an initial iteration
before any software development begins. Doing so can help the program
avoid rework and integration challenges from inadequate software and
the resulting increase in costs and time to deliver all critical features.
Without clearly identifying mission and system-critical architecture
features, the program risks developing these features after other software
is in place and facing substantial rework and integration challenges,
unnecessarily increasing the cost and time to deliver all critical features.

In determining the criticality of the software, the program should evaluate
and prioritize the relative value of the work to ensure that each iteration
delivers the most business value, this can ensure that the customer’s
most pressing needs are being met first. Business and mission goals
drive the prioritization of the most advantageous requirements. Security
requirements should also be reviewed throughout development. At the
same time, the product owner must consider technical risk relative to

43For more information on critical systems in the federal government, see GAO,
Information Technology: Agencies Need to Develop Modernization Plans for Critical
Legacy Systems, GAO-19-471 (Washington, D.C.: Jun. 11, 2019).

Program controls are
compatible with Agile
Critical features are defined
and incorporated in
development

https://www.gao.gov/products/GAO-19-471

Chapter 3: Agile Adoption Best Practices

Page 57 GAO-24-105506 Agile Assessment Guide

business and mission goals–and if there are significant “unknown
unknowns,” those features may need to be addressed early to understand
what is actually achievable versus what is desired. Developers may need
to reassess their approach if technology assumptions are made in the
program’s conception that are not reasonable for the cost allowed or the
state of the technology that must be used. If critical business
requirements are not prioritized appropriately, software may not provide
the required functionality. Lack of communication between the product
owners, users, and developers regarding features’ priorities risks the
development of noncritical software in place of critical software and lower
customer satisfaction with the completed product.

Although much of the focus in development is on functional needs, the
program must also include non-functional requirements, such as security
and privacy, in the program strategy.44 As with critical dependencies,
continuous attention to technical excellence and good design requires the
developers to consider non-functional requirements throughout
development. This is particularly true with complex programs such as
healthcare and financial systems that process sensitive data with complex
non-functional requirements. Teams overlooking non-functional
requirements may develop a system that does not comply with current
federal regulations (e.g., cybersecurity or interface requirements for IT
programs), causing unnecessary risks to business operations and
resulting in the software not becoming operational until these issues have
been addressed. See chapter 5 for additional discussion on defining and
capturing non-functional requirements.

Management should strive to ensure that teams can maintain a
sustainable development pace by prioritizing user stories, some of which
may be non-functional requirements, establishing an agreed-upon
definition of done for those user stories; and reaching a mutual
commitment on the work to be accomplished for each iteration. Many
teams embrace Agile methods because the software is needed quickly;
however, sound engineering and management principles are still required
when employing Agile.

44Non-functional requirements generally specify criteria that can be used to judge the
operation of a system rather than specific behaviors. This should be contrasted with
functional requirements that specify specific behavior or functions. Typical non-functional
requirements are reliability, scalability, maintainability, availability, quality, privacy,
security, and compliance with section 508 of the Rehabilitation Act of 1973, as amended,
29 U.S.C. §794d (discussing accessibility).

Non-functional requirements
are defined and incorporated in
development

Agile teams maintain a
sustainable development pace

Chapter 3: Agile Adoption Best Practices

Page 58 GAO-24-105506 Agile Assessment Guide

Management should encourage teams to maintain a consistent
development pace that can be sustained indefinitely. For this to happen,
management needs to promote how this paradigm will benefit everyone.
Specifically, teams that can determine a reasonable pace will not suffer
from burnout and will take pride in their ability to continually produce
quality software that pleases the customer. If teams are not working at a
sustainable pace, there is a risk of burnout, which can cause delays in the
program. In addition, working at a sustainable pace provides
management with historical data, such as the team velocity, that can
provide for more accurate cost estimates and time to develop desired
features. While team velocity is an effective measure if collected and
interpreted properly, it is important that management understand that it is
team-specific and should not be compared across multiple teams.

Chapter 7 provides additional information related to specific Agile
program monitoring and control and chapter 8 addresses the various
metrics that can be captured to monitor performance. In addition,
appendix V discusses the Scrum and XP methods for achieving a
sustainable pace and how the pace can be planned for and monitored
over the program’s life. Without establishing a consistent pace, the
program office cannot reliably use historical metrics, such as team
velocity, to estimate future efforts required in product development.

Organization environment best practices address organization life cycle
activities, culture, and acquisition policy and procedures. Although not
explicitly called out as a best practice, an organization may also be
responsible for directing, monitoring, or controlling the implementation of
program operations and team activities and dynamics. Best practices
related to these topics are discussed later in this guide.

Organizations have different missions, goals, existing processes, culture,
and requirements. Consequently, they may adopt different and varying
levels of Agile methods to suit their needs. Before beginning the process
of scaling Agile, management will select or develop a suitable approach
that might include using a pilot program to discover problems and then
mature its processes and incorporate lessons learned before fully
adopting them throughout the organization.45 In planning its transition, the

45In IT, scaling is the ability of a system, network, or process to absorb a growing amount
of work or its potential to be enlarged to accommodate that growth. If the design or system
fails when the work is increased, it does not scale.

Organization
Environment

Chapter 3: Agile Adoption Best Practices

Page 59 GAO-24-105506 Agile Assessment Guide

organization should also consider its capacity to take on the strategic
Agile initiatives.

An organization may have to consider a possible reorganization to
enable a large-scale transformation to Agile software development. This
can involve reviewing traditional roles and responsibilities and realigning
them with Agile roles (that is, program manager to product owner), or it
can be more complicated, resulting in intensive changes, such as
restructuring one or more components or reviewing entire IT portfolios.
Either approach will present challenges to the organization as it attempts
to train and “untrain” staff in new roles. One way to help ease an
organization’s reorganization is for management to establish and
empower communities of practice or other working groups of motivated
or influential individuals to lead the change. Another is to use small pilot
programs to showcase success and learn first where the organization’s
deficiencies exist before scaling Agile across the organization. Either a
top-down or bottom-up approach can be successful in scaling Agile and
helping to drive an organization’s change.

Scaled Agile
Agile methods such as Scrum and eXtreme
Programming (XP) focus on the activities of a
single, small, cross-functional team. While
these are very useful for efforts that require a
single team, many projects incur
dependencies, and require the collaboration
of multiple Agile teams. A number of
frameworks are available to facilitate these
circumstances and help an organization scale
their Agile processes. While the frameworks
have many similarities, all differ with regard to
their specific application. For example,
frameworks might suggest different iteration
lengths, role assignments, tools, and
templates. They might also describe a unique
end-state or structure of the Agile
organization, including the specific roles and
responsibilities for other parts of an
organization beyond the development team.
Regardless of the approach, a critical
success factor is the healthy Agile team. To
scale from one to several Agile teams, with
minimal disruption, organizations must first
learn about Agile program management or
formal scaling frameworks. Then,
organizations should craft an approach that
fits the project context. Even when individual
Agile teams are heathy, the organization
should expect growing pains in scaling. If
using an Agile approach for a single team is
not successful, instead of trying to scale up
that approach and using it more broadly, the
organization should address the
organizational impediments that prevent
teams from working in an Agile way. For
example, the backlog may include input from
multiple project managers, each believing
that their user stories are top priority.
Adoption of the organizational best practices
outlined in this chapter, such as cascading
support, can help ease tensions and increase
the organization’s scaled adoption.
Source: GAO analysis of : Project Management Institute,
Agile Practice Guide (Newton Square, PA 2017) , Software
Engineering Institute, and Agile Alliance. | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 60 GAO-24-105506 Agile Assessment Guide

Life cycle activities should support the iterative and incremental nature of
an Agile approach. They should also allow for the organization to tailor life
cycle activities to encourage frequent collaboration between the users
and the developers to support rapid development. When making the
transition to Agile, sponsors may need to make structural changes at the
organization level in order to support the iterative nature of Agile. These
changes include allowing programs that are applying Agile methods to
tailor life cycle activities, including technical reviews, and associated
artifacts to their cadence of delivery. These changes may affect the
organization, staffing, and interactions with other groups, such as
information assurance and operational test and evaluation. If programs
are unable to tailor life cycle activities, then the organization’s oversight
process could negatively affect the cadence established by the Agile
team, resulting in less predictable development efforts.

The organization’s life cycle must also allow for refining detailed
requirements. The highest priority of federal IT programs is to satisfy
customers through early and continuous delivery of valuable software. In
order for the mission to succeed, federal organizations’ acquisition policy
and guidance need to allow for refining detailed requirements while
maintaining the high-level program vision and frequently delivering value
in small deployments. There must be frequent collaboration between the
organization and the developers so that the most valuable work is always
completed first. If collaboration is not occurring regularly, then priorities
regarding requirements will not be known and the result may not meet the
program’s vision or customer’s needs.

Programs can respond to changing business needs when early
requirements are defined at a level high enough that the program (or
organization) can fine tune or modify the requirements to reflect a better
understanding of what is needed (see chapter 5 for a discussion of
requirements decomposition). Organizations can do this by considering
whether refined policies and procedures governing life cycle activities and
oversight allow for lower-level requirements to be refined and the speed
with which updated work can be approved. For example, in determining
the appropriateness of the life cycle activities associated with using Agile
methods, an organization can state in policy that satisfaction of the user is

Organization activities
support Agile
methods
Organization has established
appropriate life cycle activities

Chapter 3: Agile Adoption Best Practices

Page 61 GAO-24-105506 Agile Assessment Guide

the main focus and accommodating refining requirements is acceptable.
(See chapter 7 for further discussion of how to monitor changing
requirements with respect to cost, schedule, and scope commitments.)
Where detailed requirement refinement is not understood or defined at an
organization level, the adoption and full realization of the benefits from
Agile methods will be difficult to achieve.

A proven method for nurturing a strong relationship among users,
customers, the developers, and the organization is to align program goals
with strategic IT objectives and to ensure that program goals clearly
reflect stakeholder needs and concerns.46 While this alignment is
important in non-Agile settings, its urgency in an Agile environment
derives from the fact that software will be available earlier to test and
interact with other parts of the system. To effectively implement Agile
processes, the organization’s mission or strategic goals are key inputs for
decision making. If the organization’s goals are not clear or do not
adequately reflect stakeholder concerns and mission needs, then lower-
level decision making may be misaligned with the organization’s focus.47
This misalignment can, in turn, erode trust and often results in
overbearing governance and bureaucracy, leading to delays. While a
program may need to build trust with developers, the organization needs
to trust that the program office can properly manage itself through
delegation and more targeted governance.

Additionally, it is important that the organization’s software-related goals
are clearly aligned with its program goals. The continuous delivery of
working software depends, for example, on systems engineers and
quality assurance teams having sufficient resources to respond to
repeated software deliveries. If these software-specific needs are not
considered to be part of the larger program goals, then the
implementation of software applications may not fulfill minimum
requirements established by the organization.

46Agency plans for capital acquisitions, including plans for IT, should align with and
support advancement of these goals. Alignment to mission and goals is required for major
IT investments subject to Capital Planning and Investment Control (CPIC) reporting. See
chapter 2 for further discussion of legislation impacting Agile adoption in the federal
space.

47The best practice “Program controls are compatible with Agile” discusses how programs
should consider and capture both critical features as well as non-functional requirements.
Both steps within the practice can help to ensure strategic alignment between the goals of
the organization and those of the program.

Goals and objectives are
clearly aligned

Chapter 3: Agile Adoption Best Practices

Page 62 GAO-24-105506 Agile Assessment Guide

In determining whether software, program, and organization goals and
objectives are strongly aligned, an organization should collect objective
measures, such as data from road maps and product portfolios that are
well defined. These measures should be clearly communicated to the
entire organization so that stakeholders, sponsors, customers, users, and
developers know exactly which features and capabilities have been
achieved according to the goals and objectives. Doing so will not only
allow an organization to regularly track its productivity but will also
determine how an individual program fits into the organization’s portfolio
and mission. If approved program goals do not align with both the IT and
business goals, then lower-level decision making runs the risk of being
misaligned with the organization’s focus.48 Chapter 8 provides a detailed
discussion of metrics and their use in continuous improvement of
organization processes.

The following figure provides an example of a road map that can be used
to share, across different levels of the organization, what work is planned
in the current and upcoming releases.

48The best practice “Work is prioritized to maximize value for the customer” discusses the
need for the team, and ultimately the program, to routinely deliver the most valuable
functionality each iteration. Ensuring alignment between the user stories delivered in an
iteration and the goals of the program and organization via an agreed-upon artifact (such
as a road map that tracks feature prioritization) is one way to exhibit the delivery of high
value functionality.

Chapter 3: Agile Adoption Best Practices

Page 63 GAO-24-105506 Agile Assessment Guide

Figure 4: Example of a Road Map

Finally, goals should be clear but not static. Many organizations adopt
Agile precisely because it allows for rapid response to changes in either
the external or internal environment. This rapid change makes it even
more important that an organization effectively and routinely ensures that
program goals are clearly communicated.

In most organizations, adopting Agile methods involves new behaviors
and a different mindset. This is a major shift in how an organization
operates and will affect the overall climate. For some organizations, the
life cycle management process for an IT system includes not just the

Organization culture
supports Agile
methods
Sponsorship for Agile
development cascades
throughout the organization

Chapter 3: Agile Adoption Best Practices

Page 64 GAO-24-105506 Agile Assessment Guide

program office, but also outside support functions that are shared across
the organization, such as certification and accreditation or operational test
and evaluation. Policies and regulations can make it difficult to include
these areas when adopting Agile. However, cascading sponsorship (i.e.,
sponsorship throughout the levels of the organization) helps ease these
problems by having advocates in many places within the organization
who can model new Agile values and behavior, thereby instilling
confidence in the people who are actively trying to adopt the new
practices.

Implementing Agile requires that stakeholders and sponsors embrace and
fully understand the implications of this approach. Without high-level
encouragement, Agile implementation might become a paperwork
exercise, leading to a failure to complete software development. For
example, without encouragement and commitment from upper-level
management, Agile teams may not appropriately collaborate with product
owners when they are unsure about the importance of certain
functionality, causing confusion that ultimately can result in a poor
product. Accordingly, functionality developed using a process that does
not embrace an Agile mindset might require heavy investment in the post-
deployment correction of errors or functionality enhancements to meet
customer needs.

Sponsorship for a program should start with senior stakeholders openly
and explicitly supporting the use of Agile processes in the organization.
One way to initiate a successful transition is to identify influential
individuals within the organization who are interested in transformation
and can become Agile champions. These champions may or may not be
senior stakeholders but should always be someone who has the respect
of Agile adopters as well as the support of senior leaders. The
champion’s role is to help protect early Agile programs from being
derailed by those who do not understand the new methods or are
skeptical of change. Therefore, the strategy for winning over skeptics will
be for the champion to demonstrate how programs have flourished under
this new approach. Senior stakeholder sponsorship will be helpful to
organizations in transitioning to Agile methods and help to ensure
success with the use of Agile practices. Without sponsorship from senior
stakeholders and the presence of an Agile champion or multiple
champions, the organization may not embrace the transition, which can
lead to inconsistent Agile practices and lackluster results.

Chapter 3: Agile Adoption Best Practices

Page 65 GAO-24-105506 Agile Assessment Guide

Case study 8: Agile sponsor, from DOD Space Acquisitions,
GAO-19-136

A practice of Agile development is to identify an Agile sponsor within senior
management—someone with formal authority within the organization to advocate for
the Agile approach and resolve impediments. GAO’s 2019 review of the Mobile User
Objective System (MUOS) program found that the MUOS contractor lacked an Agile
advocate in the program office, which undermined its ability to fully employ an Agile
development approach. For example, even after the contractor adopted an Agile
approach, the program office directed the contractor to plan out all work across
software builds in order to maintain control over requirements—similar to a Waterfall
approach but inefficient in Agile. According to the Software Engineering Institute,
without an Agile advocate in a program’s leadership, organizations only tend to use a
partial Agile or Agile-like approach.

GAO, DOD Space Acquisitions: Including Users Early and Often in Software
Development Could Benefit Programs, GAO-19-136 (Washington, D.C.: March 18,
2019).

Source: GAO. I GAO-24-105506

While having a clearly defined policy for Agile programs can be effective
in many cases, using a policy or mandate to force adherence to Agile
principles does not produce the healthy adoption of new practices. For
example, putting policies in place too early, before the appropriate
transition mechanisms are solidified, may lead to basic compliance but
without consideration for the organization’s culture and mindset change
that should occur during a successful transition.

Further, since Agile may not be appropriate for all programs, each
program should consider its rationale for the use of an Agile approach in
accordance with defined program and software goals. For example, the
following could be considered indicators that a program is ready to adopt
Agile practices, although this is not the only scheme for evaluating
program readiness for Agile:49

• requirements are flexible;
• an established process is in place to further refine the requirements

over time;

49One approach for determining if Agile is best for a program is the Stacey diagram. This
diagram measures requirements agreement against technology certainty.

https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-136

Chapter 3: Agile Adoption Best Practices

Page 66 GAO-24-105506 Agile Assessment Guide

• an Agile champion or program sponsor is available to help the team
overcome impediments;

• users or subject matter experts are readily available to provide
feedback;

• teams have been trained in a specific Agile framework or set of
methods;

• a facilitator is available to assist teams in applying Agile methods;
• supporting functions like contracting embrace organizational changes

needed to make Agile work;
• the program is large with a variety of risks, particularly technological

obsolescence; and
• teams desire more responsibility and ownership.

Sponsors and champions should not only be assigned to enable an Agile
transition; they should understand and be able to differentiate between
traditional and Agile roles, Agile cadence, and processes. It is also
important that they are accountable for results. Sponsors should be
committed to supporting the specific Agile approach adopted so that
processes are applied consistently across the organization. While the
roles and responsibilities in a traditional acquisition are well documented
in regulations, policies, and training documents, in an Agile environment
they are more flexible and may not be as easily understood. One of the
biggest obstacles to an Agile transformation can be that very few people
in the organization know and understand Agile methods or that they
implement Agile based on limited experience and understanding of them.
As a result, sponsors and senior stakeholders may need training or
coaching regarding their new responsibilities.

Organization policies, therefore, should require sponsors and senior
stakeholders to be fully educated regarding Agile values and principles
and committed to implementing the chosen Agile approach, and
organizations should monitor completion of that training. In doing so,
sponsors can then transmit or reinforce learning from their training to
staff, as needed. If sponsors are unable to effectively differentiate
between Waterfall and Agile implementation, they may hamper or impede
the effective adoption of Agile principles, leading to a breakdown in
processes.

In addition to senior stakeholder and policy support, certain physical and
social environments should be provided by the organization to allow Agile

Sponsors understand Agile
development

Organization culture supports
Agile development

Chapter 3: Agile Adoption Best Practices

Page 67 GAO-24-105506 Agile Assessment Guide

teams to succeed. For example, Agile environments typically call
for locating cross-functional teams in physical or virtual common
areas where the teams can work together and converse regularly.
Designating a team space for physically co-located teams to work
with appropriate network and IT access can be as simple as
dedicating a conference room to the team for the duration of the
program. Even if the teams are physically separated, modern
communications and social media methods (such as video-
conferences or instant messaging chats) can be used to promote
continuous discussion. For example, some distributed teams may
establish a collaborative space where team members can talk
about their work. If all team members, including the product
owner, are not immediately accessible to answer questions, team
work may be delayed. Whether distributed or co-located, the end
goal is for all team members, including the product owner, to be
immediately accessible to ensure questions are answered
promptly and team pace is not delayed. If appropriate
organizational entities, such as human resources, are not
considered, changes to incentive and reward systems might be
slow and ineffective, preventing team cohesion and unity, and
restricting productivity.

To facilitate the delivery of a “just enough, just in time” product, a
climate of trust should exist throughout the life cycle between the
organization and the developers. Traditional federal acquisition
environments are typically based on strong oversight, which can
sometimes lead to adversarial relationships between the acquirers
and the developers. In an Agile environment, the goal is to avoid
these adversarial relationships by developing trust between
developers and organizations through granting Agile teams
greater autonomy than seen in a traditional acquisition
environment. In an Agile environment, a climate of trust, built by
shared experiences in which all parties feel respected and
accepted, is needed so that the program team can achieve its
fullest potential. A first step toward developing trust between the
developer and the organization could be a joint workshop or event
that focuses on the effort but provides opportunities for working
together across organization boundaries. Additionally,
organizations should consider granting greater autonomy to Agile
teams by providing them with the skills and knowledge necessary
to succeed and an awareness of the long-term goals of the
system.

Virtual Co-location
Agile development teams are inherently self-
organizing and adaptive to change, but technology
professionals must maintain a strong team culture of
close collaboration, feedback loops and dynamic
interaction to stay effective. Remote working is a skill
that requires time and effort to develop. Culture is
frequently viewed as a barrier to effective
collaboration, and this becomes more challenging
when working remotely. Organizations must build trust
in their remote teams based on mutual understanding
and respect. Agencies and their vendors must also
consider the impact on retention and recruiting if the
contract is restricted to in-person work only.
Whether a remote, in-person, or a hybrid model is
employed, ensuring that teams have the right tools to
lower barriers to communications and collaboration is
key. The more difficult it is to work collaboratively
within and across teams, the more difficult it will be to
work in an Agile way to produce working products
intended to meet the needs of the people who need
them.
First, it is important to review the remote team
situation. By working remote, some teams may have
lost the benefits of co-location, where constant
interaction, easy pairing and water cooler
conversations aid teamwork. In these cases,
collaboration should be addressed in other ways.
Video conferencing is one way to engage with the
team. Further, while remote, teams must also
continue to validate their work with real customers and
users. Fast feedback is essential to enable Agile
teams to make rapid decisions and focus on the right
features.
Effective remote teamwork requires close
collaboration over multiple open channels with
individuals skillfully moving between supporting
remote technology tools. Developing good
communication and collaboration habits is a great
start, but remote teams should create a shared virtual
team space and match collaboration tools to desired
behaviors to create a common toolset, form a sense
of community and maintain trust through team
connection in order to succeed.
To help achieve this goal, teams should understand
the options available and identify additional tools that
can support the way the team works while prioritizing
face-to-face interactions. Technology is rapidly
evolving and often provides the right platform to
enable conversations. The Agile process is built on
the three pillars of the empirical process:
transparency, inspection, and adaptation. Teams must
use these, and all tools available, to continually evolve
their working practices to improve the outcomes they
produce for customers and users.
Source: GAO Analysis of Gartner Inc. Information. | GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 68 GAO-24-105506 Agile Assessment Guide

Another method to develop a climate of trust is to consider
communication practices across groups and the amount of transparency
coming from the organization both bottom up and top down. For example,
one option could be to make all artifacts that contribute to the
development of the system broadly accessible to everyone associated
with a program, including oversight boards.50 Availability of team
message boards, instant messaging software, and other collaborative
workspaces can facilitate such communication practices. This can be
helped by having a process and terminology in place that are commonly
understood in order to prevent misunderstanding.

After Agile has been implemented, the organization can continue to learn
and adapt from the feedback from key stakeholders and Agile teams. To
do this requires continuous inspection and adaptation to improve the
entire development process, such as in a more formal meeting, a
retrospective, or an informal set of discussions among sponsors. In
addition, ongoing demonstrations of working software can then serve as
touchpoints where an oversight body can gain added assurance that the
Agile teams are developing a system of value in line with its intentions.

To effectively apply lessons learned, relevant, reliable data should be
collected during the transition to help facilitate and support senior
stakeholder adaptation and decision making, since stakeholders are often
removed from day-to-day Agile operations. In addition, modifications to
appropriate policies and processes, such as systems engineering life
cycle documentation, will help ensure that needed changes to Agile
practices and processes are effectively communicated and consistently
applied throughout the organization.

Establishing an environment supportive of Agile can aid team and
program operations in meeting program goals; however, if an
environment supportive to Agile methods is not in place, then team and
program operations might not have the resources necessary to be
successful. This in turn could impede delivery of the product and not
meeting agreed-upon goals for cost, schedule, and performance.

50The best practice, “Technical environment enables Agile development”, discusses the
need for a program to consider program management and technical support tools early in
program planning. As part of these deliberations, the program should think about access
to these tools and the level of transparency it might afford to stakeholders that are less
active in the day-to-day operations of the team or program.

Chapter 3: Agile Adoption Best Practices

Page 69 GAO-24-105506 Agile Assessment Guide

Agile in Action 1: Co-location and virtual communication

In April 2023, we discussed the Census Bureau’s Center for Enterprise Dissemination
Services and Consumer Innovation’s (CEDSCI) use of virtual communication tools to
replicate co-location for an Agile environment. Prior to the COVID-19 pandemic, the
entire team was physically located at Census Bureau headquarters (HQ), with most
working in person and some engaged in telework.

Once the COVID-19 National Emergency began, CEDSCI tried communicating through
traditional email and tracking historical email threads, but found that this approach was
not effective or efficient. Next, CEDSCI experimented with a variety of programs for
virtual communication. As a result, officials learned of their respective advantages and
drawbacks. In one case, only the person who set up the meetings could control the
discussion and invitations, negatively impacting meeting logistics if that person was
absent from the meeting. In another case, the tool lacked a public registry channel to
maintain a historical record of program inputs and information.

Eventually, the CEDSCI found a one virtual tool that met their needs. It features a
public registry of information with the ability to create channels, and a ledger option to
search the registry for information within the tool. Thus, staff can view the full thread of
information, no matter when they were added to the thread. To facilitate and protect
team communication, this tool is accessible via the Bureau’s Virtual Private Network
(VPN) from any location.

Although CEDSCI also uses email to document decisions, such as contracting
approvals, this communication tool is self-documenting and supports dashboards with
logs. CEDSCI established a “do not delete” policy for messages on all channels, but
users are able to adjust their own retention settings. The communication tool can also
log asynchronous communication and minimizes the need for the team to meet in one
place at one time. It also encourages dynamic communication among team members
with the ability for anyone with access to review historical information efficiently.

At present, use of this communication tool is limited to CEDSCI and has not been
adopted by the Census Bureau as a whole. As a result, communication with
stakeholders outside CEDSCI relies on other communication tools.

While virtual communication tools do not replace in-person meetings or ad-hoc
conversations, they facilitate the ability to have a distributed team working remotely
from different locations. For example, officials reported that virtual communication tools
enabled them to expand their recruitment efforts since they can provide employees
opportunities outside of the Census HQ area. Officials said that they can find the best
person for the job, instead of the best person within “about 25 miles of a certain
location.” Since the end of the COVID-19 National Emergency, CEDSCI has held hybrid
meetings with virtual and in-person attendees but recognized that remote workers had
difficulty participating with in-person attendees due to current hybrid meeting
technology limitations. Officials found that virtual team meetings work best because
they can overcome physical space limitations, the virtual communication tool supports
documentation, and everyone has an equal chance to participate.

Source: GAO. I GAO-24-105506

Chapter 3: Agile Adoption Best Practices

Page 70 GAO-24-105506 Agile Assessment Guide

Open and explicit support by the senior stakeholders also means that
traditionally rewarded behavior is no longer the norm. This is often one of
the hardest concepts for senior stakeholders to consistently practice
when advocating for change. Sponsorship from senior executives takes a
step toward tangibly expressing this larger commitment and fostering an
environment of trust. To that end, an organization should also examine its
existing incentives and rewards systems and consider the extent to which
they might interfere with or reinforce Agile behavior and make changes to
bring those systems in alignment with Agile principles.

Changes to incentives and rewards systems may be slow and ineffective,
thus preventing team cohesion and unity and restricting productivity
unless there is active involvement from the appropriate organization
entities, such as human resources and employee unions. To ease the
transition, organizations should identify and include such entities early
and establish an organization goal to align related incentives and rewards
with Agile values and principles. For example, one step to achieve such
an environment and demonstrate support from senior stakeholders is to
establish appropriate incentives to work on Agile teams and offer rewards
to teams that satisfy business needs. That is, rewards should be tied to
accomplishments (e.g. working software) and not to the outputs of an
Agile process.

Most organizations have incentives and rewards that focus on individual
accomplishments. However, in an Agile environment, incentives should
be established to supplement traditional individual rewards with those that
also focus on team success. For example, the reward system should be
closely related to achieving software and program goals. If organization
rewards are not structured to promote team performance, then
competitiveness or a lack of respect among team members might
increase, impacting team behavior, productivity, and outputs.51

The organization can also use other mechanisms to reward team
performance. For instance, rewards such as public acknowledgment by
presenting a program’s success story at conferences and other
networking events and team access to certificate programs might be used
to supplement individual-focused performance rewards. However, for
such a rewards system to be effective, managers should understand the

51The award and incentive structure for federal government and contractor support
employees are different. As a result, when considering awarding both individuals and
teams, leadership within the program will need to review the policies of their organization,
and consider the terms and conditions of the support contract.

Incentives and rewards are
aligned to Agile development
methods

Chapter 3: Agile Adoption Best Practices

Page 71 GAO-24-105506 Agile Assessment Guide

kinds of rewards that different individuals value and seek to reward
successful teams accordingly. Structuring organization incentives to
promote improved team performance and behavior will help productivity
and outputs.

The organization’s Agile acquisition policy and guidance should align with
the planned acquisition strategies.

Before entering into any contract, the program office should analyze the
risks, benefits, and costs associated with the acquisition. In a federal
agency, this can be accomplished with acquisition planning as outlined in
the Federal Acquisition Regulation (FAR) and other agency acquisition
policy and guidance documents. For example, the Department of Defense
has established the Defense Federal Acquisition Regulation Supplement
(DFARS), which provides additional information, requirements, and
deviations for DOD programs as they implement the FAR. Additionally,
FITARA grants the Chief Information Officer (CIO) at covered agencies
the authority to approve all IT contracts, either directly or as part of active
participation in agency governance.52

Processes should also be in place in acquisition planning documents,
including the acquisition strategy and plan, to allow for close collaboration
between the developers and stakeholders in order for everyone to agree
on what features have the highest priority. In a commercial environment,
the business workforce includes managers and users of the product being
developed. In the federal government, these roles may vary and span
different organizations, not to mention the multiple business-related

52The law requires covered agency CIOs to review and approve IT contracts and OMB’s
implementing guidance states that agencies shall not approve IT acquisition strategies
and plans without review and approval by the CIO. 40 U.S.C. § 11319(b)(1)(C)(i): Office of
Management and Budget, Memorandum M-15-14, Management and Oversight of Federal
Information Technology, at 13 (June 10, 2015).

Organization
acquisition policies
and procedures
support Agile
methods
Guidance is appropriate for
Agile acquisition strategies

Chapter 3: Agile Adoption Best Practices

Page 72 GAO-24-105506 Agile Assessment Guide

stakeholder roles. These roles can include program office personnel,
information assurance personnel, logisticians, trainers, and others.

Further, the overarching acquisition strategy should match the program’s
Agile cadence. While many contract types can be used to effectively
support Agile development efforts, the way the contract is structured is
one factor that can impact Agile development efforts. Therefore, the
contract structure and the acquisition strategy need to support Agile
implementation, such as by allowing for interim demonstration and
delivery between official releases. In addition, Agile development
contracts should specify the cadence of delivery and to what extent
product demonstrations will be relied on to obtain user and customer
feedback. These demonstrations can be included within the contract
deliverables in the contract data requirements lists.

Accordingly, the contract should include frequent deliverables, rather than
delivery milestones that may span several months, taking care to ensure
that the software meets the delivery requirements. However,
requirements should be written in such a way as to allow the government
representative reviewing the deliverables for acceptance (e.g., the
technical team in coordination with the product owner) enough flexibility to
adjust requirements prioritization and the delivery schedule as the
program evolves. If an acquisition strategy and contract do not allow for
interim delivery and product demonstrations, then the organization may
lose opportunities to obtain information and face challenges when
adjusting requirements to meet and adapt to customer needs. This may
negatively impact continuous delivery of software.

Contracts should align oversight reviews with Agile practices (e.g.,
frequent, interim deliverables and product demonstrations), frame the
acquisition strategy to match the Agile cadence, allow for flexibility to
refine detailed requirements, and encourage close collaboration between
the developers and stakeholders.53 The organization’s contract oversight
mechanisms should also be aligned with Agile practices and the
acquisition strategy should be framed to the Agile cadence. In the federal
government, large acquisition programs conduct document-centered
capstone reviews, such as preliminary design reviews and critical design
reviews, which are based on an organization’s policies and guidance

53The U.S. Digital Services’ TechFAR handbook offers guidance on how to acquire goods
and services in an Agile setting: https://playbook.cio.gov/techfar/. Guidance in the
TechFAR handbook can be supplemented by the U.S. Digital Services Playbook:
https://playbook.cio.gov/.

https://playbook.cio.gov/techfar/
https://playbook.cio.gov/

Chapter 3: Agile Adoption Best Practices

Page 73 GAO-24-105506 Agile Assessment Guide

governing the system development life cycle. These reviews analyze
requirements, preliminary design, and detailed design documentation;
software coding does not typically begin until after all these documents
have been approved following the critical design review. However,
contracts for Agile software development should enable incremental and
frequent progress reviews at key points. If the organization does not
adjust its oversight process to account for Agile methods, then there may
not be adequate insight into the contractors’ productivity and it may
decrease. Contracting and the federal acquisition process are discussed
in more detail in chapter 6.

Case study 9: Agile adoption, from Space C2, GAO-23-105920

In June 2023, we assessed the success of the Space C2 program’s Agile adoption
efforts. Our analysis found that the Space C2 program substantially or fully met all three
functional perspectives (team, program, and organization) of the Agile Adoption best
practices. The program satisfied the expectations of the Agile Adoption best practices;
therefore, no recommendations were necessary.

For example, for the team dynamics and activities functional perspective, we found
Space C2 has self-organized teams, with defined roles, that meet daily to review
development actions, evaluate user needs, address roadblocks, and make updates.
Space C2 uses modern digital engineering tools to support continuous integration and
non-functional requirements are not tracked separately. The program completes a
retrospective at the end of each 90-day iteration, which is documented in the program
increment reports, and holds a demonstration at the end of its 3-week development
cycle.

For the program operations functional perspective, we found Space C2 staff are
appropriately trained in Agile methods and the program promotes a learning culture with
a team dedicated to providing continuous access to educational opportunities. Further,
that Agile training was provided to the program office personnel. Space C2 primarily
uses an Agile software program called JIRA to manage the program. While Space C2
system design supports iterative delivery, the program continues to have issues with
legacy code, which hinders Agile implementation.

At the organization environment functional perspective, we found that life-cycle
activities are clearly defined for the assessed system. Additionally, according to
program officials, Space C2 leadership supports Agile. Further, Space C2 hired an
Agile coach to help program officials execute the program. Program officials stated that
multi-year contracts the program awarded hampered their ability to implement Agile
processes, which they said they took steps to address in their January 2023 contract
modification.

GAO, Space Command and Control: Improved Tracking and Reporting Would Clarify
Progress amid Persistent Delays, GAO-23-105920 (Washington, D.C.: June 8, 2023).

Source: GAO. I GAO-24-105506

https://www.gao.gov/products/GAO-23-105920
https://www.gao.gov/products/GAO-23-105920

Chapter 3: Agile Adoption Best Practices

Page 74 GAO-24-105506 Agile Assessment Guide

Team dynamics and activities

1. Team composition supports Agile methods
• Teams are self-organizing.
• The role of the product owner is defined to support Agile methods.

2. Work is prioritized to maximize value for the customer
• Agile teams use user stories to define work.
• Agile teams estimate the relative complexity of user stories.
• Requirements are prioritized in a backlog based on value.

3. Repeatable processes are in place
• Agile programs employ continuous integration.
• Mechanisms are in place to ensure the quality of the code being

developed.
• Agile teams meet daily to review progress and discuss

impediments.
• Agile teams observe regular demonstrations.
• Agile teams observe regular retrospectives.

Program operations

4. Staff are appropriately trained in Agile methods
• All program staff have appropriate training since the techniques

used are different from those used for Waterfall development
programs.

• Developers and all other supporting team members have the
appropriate technical expertise needed to perform their roles.

5. Technical environment enables Agile development
• System design supports iterative delivery.
• Technical and program tools support Agile.

6. Program controls are compatible with Agile
• Critical features are defined and incorporated in development.
• Non-functional requirements are defined and incorporated in

development.
• Agile teams maintain a sustainable development pace.

Best Practices
Checklist: Adoption
of Agile Methods

Chapter 3: Agile Adoption Best Practices

Page 75 GAO-24-105506 Agile Assessment Guide

Organizational environment

7. Organization activities support Agile methods.
• Organization has established appropriate life cycle activities.
• Goals and objectives are clearly aligned.

8. Organizational culture supports Agile methods
• Sponsorship for Agile development cascades throughout the

organization.
• Sponsors understand Agile development.
• Organization has established an environment supportive of Agile

development.
• Incentives and rewards are aligned to Agile development

methods.
9. Organizational acquisition policies and procedures support Agile

methods
• Guidance is appropriate for Agile acquisition strategies.

Overview of Agile Execution
and Controls

Chapter 4

Chapter 4: Overview of Agile Execution and
Controls

Page 77 GAO-24-105506 Agile Assessment Guide

Once a program has adopted an Agile framework for developing its
software, it should also apply effective practices for Agile execution and
control. Effective program management can help programs achieve
strategic goals and increases the likelihood that a program will deliver
promised capabilities on time and within budget. Program management
encompasses many disciplined practices needed to execute and oversee
a program, including requirements development and management,
acquisition strategy development, and program monitoring and control
(e.g. cost and schedule estimating). This chapter provides a high level
background for each of these three areas, and chapters 5, 6, and 7
describe best practices for each area and how those best practices apply
for an Agile program.

• Requirements development and management. Having a
documented strategy for developing and managing requirements
helps to ensure that the final product will function as intended.54
Developing the requirements includes planning activities, such as
establishing program objectives to outline the course of action
required to attain the desired end result, and developing plans for
understanding and managing the work. Effectively managing the
requirements includes assigning responsibility for identifying the
requirements and tracking their status, as well as controlling
refinements made to lower-level requirements. Doing so helps to
ensure that each requirement traces back to the business need and
forward to its design and testing. When done well, requirements
management practices provide a mechanism to help ensure that the
end product meets the customers’ needs. Agile integrates planning
with design, development, and testing to deliver small amounts of
working software over a shorter time period, making requirements
management an ongoing, continuous process versus a single phase
in a series of processes.

• Acquisition strategy development. Acquisition strategies should
define standard Agile terms and include direction for contract
solicitations to include these definitions. OMB guidance specifies that
all acquisition strategies and plans include principles that allow for
adequate incremental development, which is defined as “planned and
actual delivery of new or modified technical functionality to users [that]

54A strategy document, which can provide documentation at a high level, provides the
guidance and principles that govern the program’s requirements management process.

Chapter 4: Overview of Agile Execution and
Controls

Chapter 4: Overview of Agile Execution and
Controls

Page 78 GAO-24-105506 Agile Assessment Guide

occurs at least every 6 months.”55 The acquisition strategy is also
where it is appropriate to establish expectations, such as the overall
development cadence (e.g. iteration length, release length,
synchronization activities among multiple teams) that should carry
forward into the solicitation and resulting contract. In turn, Agile
program contracts should be flexible enough to allow for lower-level
requirements to be refined over time. These contracts should also
provide the means for management to mitigate risks, track
deliverables, and easily monitor contractor performance.

• Program monitoring and control. The ability to generate reliable
estimates is a critical program management function; estimating is
crucial to unlocking the team’s ability to predict and commit to what
deliverables can be accomplished in the near term. Typical estimates
include cost and schedule estimates that are updated throughout the
program’s life cycle, forecasts of costs at completion for work in
progress, and plans to establish an Agile work breakdown structure to
identify discrete features that can be monitored. Additionally, a risk
management process should be established to effectively identify and
control cost, schedule, and technical risks.

At first glance, it might appear that applying these more traditional
program management practices to an Agile development effort would
conflict with the principles of the Agile Manifesto. However, existing Agile
artifacts, such as the feature’s lead and cycle time (as described in
Chapter 8), the number of defects discovered, and team velocity trends
can be used to effectively oversee an Agile program in a real-time
fashion, allowing program management to quickly address risks and
make better decisions. The following sections provide more details about
each of these program management practices and refer to other chapters
for more information, where applicable.

Agile methods integrate planning, design, development, and testing using
an iterative and incremental life cycle to deliver small amounts of software
to customers at frequent intervals. These frequent iterations provide
program management with an effective way to measure progress
continually, reduce technical and programmatic risk, and respond to
feedback from stakeholders.

55Office of Management and Budget, Memorandum M15-14, Management and Oversight
of Federal Information Technology, Attachment B: Definitions of Terms for the Purposes of
this Guidance, “Adequate Incremental Development” (June 10, 2015).

Overview of Requirements
Development and
Management

Chapter 4: Overview of Agile Execution and
Controls

Page 79 GAO-24-105506 Agile Assessment Guide

Agile teams typically embrace rolling wave planning in which near-term
work is planned in detail, while all future work is identified at a high
level.56 Planning near-term work in detail provides the building blocks for
constant updates from feedback and lessons learned that characterize
Agile methods. However, the magnitude associated with requirements
refinement must be confined to the scope of the capabilities in the
program road map. Using an Agile approach should not be viewed as an
opportunity for boundless development.

All remaining work is summarized and documented in what is commonly
referred to as an epic. As time passes and future elements of the program
become better defined, epics are decomposed into features for release
planning and user stories for iteration planning. This incremental cycle of
rolling wave planning continues for the life of a program until all work has
been sufficiently converted into user stories. Agile programs typically use
five levels of planning to progressively define work, as illustrated in figure
5. The inverted triangle reflects the traceability and relationship between
the planning documents at the top, represented by the vision and epics,
and the working documents represented by releases, iterations, and user
stories.

56GAO, Schedule Assessment Guide: Best Practices for Project Schedules, GAO-16-89G
(Washington, D.C.: Dec. 22, 2015).

https://www.gao.gov/products/GAO-16-89G

Chapter 4: Overview of Agile Execution and
Controls

Page 80 GAO-24-105506 Agile Assessment Guide

Figure 5: Agile Planning Levels

The vision level provides a strategic view of the program goals
expressed at a broad level so that the vision remains purposefully static
and changes only infrequently; it is similar to a mission needs statement.

The epic level describes large concepts which, when developed, will
move the program toward accomplishing the vision. An epic is useful as a
placeholder to keep track of and prioritize larger ideas.

The release level provides the foundational structure for deploying
needed capabilities to the operational community. It begins with a
planning segment where the team prioritizes the requirements and
establishes preliminary cost and schedule estimates. Releases occur in
fixed intervals throughout the life of a program. An important difference
exists between releases and deployments. A release is typically an
internal hand-off of functioning code, whereas a deployment makes the
functionality available to external stakeholders and users. For some

Chapter 4: Overview of Agile Execution and
Controls

Page 81 GAO-24-105506 Agile Assessment Guide

commercial programs, a release may happen daily or even multiple times
per day, though that is typically not the case for government programs.57

At the iteration level, the developer designs, codes, integrates, and tests
whether the software provides working capabilities that satisfy the needs
of the selected user stories.58 More detailed planning done at the iteration
level ensures that the Agile teams develop software that satisfies the
customer’s prioritized needs. An iteration should always be the same
amount of fixed time, typically 2-4 weeks in length, so that a cadence can
evolve.

The user story level is broken down into tasks that are the daily work of
the teams.

Terminology

Agile programs may use different terminology when referring to the same things. For
example, an epic can also be referred to as a theme or high-level requirement;
however, it is important that all members of an Agile program use the same
terminology to avoid confusion.

Source: GAO. I GAO-24-105506

As discussed previously, Agile programs do not identify all of their low-
level requirements up front; instead, the Agile team refines requirements
by soliciting feedback from the customer. Because stakeholders, as part
of the Agile team, are very much involved in prioritizing and reviewing
requirements that have already been developed, the risk that the team
will produce requirements of little value diminishes. For each iteration, the
Agile team focuses on creating only what provides the customer with
value. Since software is developed in smaller increments, stakeholders
can provide immediate feedback on demonstrated capabilities. Using this
information, the team updates the program backlog so that it reflects
desired updates.

Requirements are initially expressed as high-level capabilities in a
program’s road map and are prioritized in the backlog on a regular basis.

57“Release” in the commercial community may not mean the same thing as in the
government. In government settings, the working product at the end of a release may go
to a certifier or independent test organization rather than directly to the end user.

58Agile teams may assign a specific meaning to terms such as “iteration” and “release.”
We have used the terms in this guide as they are most commonly understood by Agile
teams.

Chapter 4: Overview of Agile Execution and
Controls

Page 82 GAO-24-105506 Agile Assessment Guide

As the highest-priority capabilities are pulled from the backlog during
each iteration, they are further refined based on customer feedback. As
requirements get more specific, the team must ensure that full traceability
to the business need remains apparent. At the same time, the Agile
software team is refining requirements and developing test plans to
determine acceptance criteria and confirm whether the chosen
requirements have been satisfied at the end of the iteration.

As discussed in chapter 1, one of the key differences between a Waterfall
development process and Agile development methods is that Waterfall
starts by developing a plan for all requirements and ends when those
requirements have been completed. Conversely, Agile starts by
developing a high-level program goal and priority requirements and ends
when the program goal has been met, with an understanding from
everyone involved in the program that the requirements will be refined
over time as small segments of software are developed and presented to
customers for feedback. In addition, program management tradeoffs are
different for Waterfall and Agile development frameworks. In a Waterfall
development, the requirements are fixed but schedule and cost are
variable, while in Agile development, the program cost and schedule are
fixed but the requirements are variable for each iteration. The different
constraints associated with these two software development approaches
are shown in figure 6.

Figure 6: Comparison of Traditional Waterfall and Agile Development Program
Management Constraints

While Agile is expected to quicken capability delivery, there is no
guarantee that Agile development will deliver the full capability more

Chapter 4: Overview of Agile Execution and
Controls

Page 83 GAO-24-105506 Agile Assessment Guide

quickly than Waterfall development. However, Agile is intended to deliver
working software more quickly because Waterfall does not deliver
functional capabilities until the program is complete. Updating and refining
requirements may increase the risk of system redesign as requirements
change, but the product should provide the most important capabilities
sooner, as long as users’ and other stakeholders’ feedback is used to
inform requirements development and management.

Specific projects from an Agile vendor may operate with a fixed cost and
schedule with flexible scope; however, government programs generally
do not have the autonomy to manage a completely flexible scope. If
scope cannot be completely flexible, it is vital for teams and customers to
differentiate the requirements, understanding that there are “must have”
requirements that are different from the “nice to have” requirements early
in the planning effort. Having a hierarchy will help facilitate delivery of the
“must have” requirements first, thereby providing customers with the
greatest benefits as soon as possible and within cost. In this case, it may
be possible for the government to acquire a minimum viable product
(MVP) with a fixed budget or fixed schedule; however, cost and schedule
overruns may occur to achieve the required, overall program scope. See
chapter 5 for more information on requirements development and
management and MVP.

While there are numerous frameworks available to Agile practitioners,
there are no standard terms for Agile processes and artifacts from the
acquisition viewpoint. Therefore, when implementing Agile methods, the
organization and the contractor must work together to define the Agile
terms and processes that will be used during the development. These
definitions will assist everyone related to the program in understanding
the relationship between Agile and program acquisition. Communicating
this kind of information is often overlooked, especially as new employees
join the program.

Chapter 6 addresses contracting in an Agile environment in greater detail
and discusses three best practices: (1) tailor acquisition planning and
contract structure to align with Agile practices; (2) incorporate Agile
metrics, tools, and lessons learned from retrospectives during the
contract management process; and (3) integrate the program office and
the developers. These best practices highlight that acquisition strategies
are implemented by contracts that are flexible enough to allow for lower-
level requirements to be refined over time while allowing management to
mitigate risks, track deliverables, and easily monitor contractor
performance. As previously stated, reasonable risk in the contracting

Overview of Acquisition
Strategy Development

Chapter 4: Overview of Agile Execution and
Controls

Page 84 GAO-24-105506 Agile Assessment Guide

process is appropriate as long as risks are controlled and mitigated.
These best practices help to mitigate those risks common to contracting
in an Agile environment by tying the contracting process and an Agile
approach together.

Case study 10: Updated goals and governance enhanced the joint
cyber warfighting architecture, from Defense Acquisitions,
GAO-21-68

In November 2020, GAO reported on its review of the status of U.S. Cyber Command’s
(USCYBERCOM) Joint Warfighting Architecture (JCWA). Cyberspace is a growing,
human-made environment that reaches into many parts of life, including education,
economic development, health, and other public services. Since 2016, the Department
of Defense (DOD) has invested in a range of joint cyber warfighting systems and
capabilities to support the full spectrum of military cyber operations carried out by
DOD’s Cyberspace Operations Forces. In 2019, to integrate these disparate systems
into a more cohesive capability, USCYBERCOM introduced an overarching vision for
all cyber warfighting known as JCWA.

To defend and fight in cyberspace, DOD is procuring new systems to harmonize cyber
functions and promote information sharing. However, DOD and USCYBERCOM had
just begun their work to support these systems as a unified whole. USCYBERCOM
established program requirements and initiated several of the cyber acquisition
programs now identified as part of the JCWA prior to developing the concept itself.
GAO found that USCYBERCOM created the JCWA as a concept to harmonize cyber
capabilities and their enabling acquisition programs to meet the needs of the
Cyberspace Operations Forces. Although the primary element of the JCWA concept is
the interoperability and information sharing among these systems, USCYBERCOM had
not defined JCWA interoperability goals for constituent systems.

GAO also found that, as of August 2020, USCYBERCOM had not yet progressed
beyond diagramming the JCWA concept and beginning efforts to establish supporting
offices. Specifically, USCYBERCOM did not establish the goals or objectives that would
define interoperability requirements across JCWA systems or a governance structure to
prioritize requirements among the programs. According to USCYBERCOM and
acquisition program officials, without clearly defined interoperability requirements,
JCWA programs may face challenges to provide needed capabilities to Cyberspace
Operations Forces.

GAO concluded that rapidly evolving cyber warfighting techniques coupled with a lack
of goals to define interoperability has hampered JCWA efforts. The JCWA concept also
lacked command-level coordination needed for a portfolio of interoperable systems.
USCYBERCOM began to grapple with these challenges by taking steps to identify
governance roles and responsibilities internally and elsewhere in DOD. However, we
reported that until USCYBERCOM established goals for interoperability requirements
and addressed governance shortfalls, the JCWA portfolio of programs would remain at
risk of failing to provide the needed joint cyber warfighting capability.

https://www.gao.gov/products/GAO-21-68

Chapter 4: Overview of Agile Execution and
Controls

Page 85 GAO-24-105506 Agile Assessment Guide

Since the report’s issuance, DOD has taken steps to address these shortcomings. In
September 2021, USCYBERCOM finalized a Concept of Operations that encapsulated
Joint Cyber Warfighting Architecture goals for interoperability. USCYBERCOM also
documented roles and responsibilities for its Joint Cyber Warfighting Architecture
Integration Office and Joint Cyber Warfighting Architecture Capabilities Management
Office.

GAO, Defense Acquisitions: Joint Cyber Warfighting Architecture Would Benefit from
Defined Goals and Governance, GAO-21-68 (Washington, D.C.: November 19, 2020).

Source: GAO. I GAO-24-105506

There are several advantages that program monitoring and control
documentation provide for an Agile program. First, since effort is
commonly used as a proxy for cost, estimating effort can determine not
only the program cost, but it can also reasonably predict how long both
near-term and long-term deliverables will take to develop. Second,
understanding capacity (or the total amount of work that Agile teams can
accomplish in one iteration) helps prioritize work and predict the cost of a
delay when “must have” features cannot be accomplished as expected.
Finally, having the Agile team commit to near-term deliverables is
important because those commitments materially affect customer
planning and business objectives while at the same time making
developers accountable for their work.

Estimating is the key to unlocking the team’s ability to predict and commit
what deliverables can be accomplished in the near-term. Therefore, while
any cost estimate will always be based on the best information available
at a given time, Agile program cost estimates have an advantage over
traditional program cost estimates because they can be regularly updated
to reflect new information in accordance with the program’s cadence. The
regular cycle of iterations and releases provides numerous opportunities
to continuously refine the estimate based on learning what the customer
wants. Even so, it is important to remember that a cost estimate is
typically created or updated before financial commitments have been
made and used to establish a performance measurement baseline. While
the estimate should be updated regularly, the original baseline is only
developed once. For example, the estimate at completion may be
revised, but the original cost estimate should rarely be changed so that
variances can be observed.

While Agile supports change and continuous process improvement, the
program should quickly establish a regular cadence of time- boxed
releases and iterations so that teams can estimate the cost and time it

Overview of Program
Monitoring and Control

https://www.gao.gov/products/GAO-21-68

Chapter 4: Overview of Agile Execution and
Controls

Page 86 GAO-24-105506 Agile Assessment Guide

takes to develop features with some degree of precision. Since both
releases and iterations are time boxed, estimating the number of
iterations in a release should be relatively straightforward. For example, if
a program has a release every 12 weeks and iterations are 2 weeks long,
then there should be six iterations for every release. After several
iterations, program office personnel can track a team’s cadence to better
forecast the remaining effort.

Estimating the cost and time it will take to develop software is inherently
challenging because not enough is known at the start about what exact
requirements and functionality are going to be needed. As a result, low
level requirements should be flexible so that they may shift as the
program evolves. Typically, developing an accurate estimate will be
difficult until the team learns more about the program’s requirements, For
these reasons, cost and schedule estimates should always quantify the
effect of changing assumptions using risk and uncertainty analysis, and
the program should establish a strategy for how risks will be identified,
communicated, and controlled. Additionally, it is important that managers
and stakeholders understand that since an Agile program’s requirements
will be iteratively determined, collaboration between the customer and
developers is paramount.

Case study 11: Cost and schedule challenges in Agile programs,
from Personnel Vetting, GAO-23-105670

In August 2023, GAO reported on progress by the Defense Counterintelligence and
Security Agency (DCSA) in delivering the National Background Investigation Services
(NBIS) system for personnel vetting for the majority of the federal workforce. NBIS
officials are using Agile methods to develop the software. As reported by us in 2021,
DCSA officials have faced challenges in incorporating the program’s Agile software
development approach into the more traditional approach to scheduling and have had
to adapt to several shifts in NBIS development goals since the program’s inception in
2016. However, developing and executing a schedule for an Agile program provides a
focus on deadlines for specific goals and activities to ensure that all required actions
are planned to be completed.

As of 2023, we found that although the Department of Defense (DOD) has delivered
some capabilities through a new information technology system intended to support all
phases of personnel vetting, DCSA still lacked a reliable schedule and cost estimate for
NBIS.

In 2021, GAO recommended that DCSA develop a reliable schedule. However, as of
February 2023, DCSA continued to lack a reliable schedule for NBIS implementation
and had not resolved weaknesses we identified in 2021. While DCSA concurred with
our 2021 recommendation to revise the NBIS program schedule to meet all
characteristics of a reliable schedule as defined by GAO’s best practices, it had not

https://www.gao.gov/products/GAO-23-105670

Chapter 4: Overview of Agile Execution and
Controls

Page 87 GAO-24-105506 Agile Assessment Guide

implemented that recommendation as of February 2023. The lack of progress
addressing schedule weaknesses could further delay NBIS implementation and the
planned replacement of legacy systems. NBIS was originally slated to be fully
operational in 2019., but it continues to face delays. As of February 2023, DCSA
projected that operational deployment of all capabilities would occur in fiscal year 2023.

GAO also found the NBIS program’s cost estimate from 2022 is not reliable, meaning
that DCSA may be unable to accurately project NBIS costs. In addition, it is unclear
how the program is using the cost estimate to successfully manage its budget. NBIS
program documentation states that development is based on the funding available and
that any cost shortfalls are resolved by prioritizing requirements or delaying scheduled
activities. NBIS program officials noted that cost estimating has been challenging and
provided several reasons why the cost estimate they had developed did not meet our
best practices. For example, program officials stated that DOD guidance for software
development programs does not require certain kinds of documentation. NBIS program
officials also stated that strict adherence to each of our best practices would require
significant redirection of time and resources and would result in major delays to the
delivery of capabilities. However, we found that the NBIS program had already invested
staff time and resource to developing cost estimate documents and is required by DOD
guidance to update its initial estimate annually. Further, projecting future costs is
important with software programs because program managers generally do not know
enough at the start about the exact requirements and functionality that will be needed
as the program evolves.

GAO concluded that Congress should consider requiring the Secretary of Defense to
direct the NBIS Program Management Office to develop a reliable program schedule
and cost estimate for NBIS.

GAO, Personnel Vetting: DOD Needs a Reliable Schedule and Cost Estimate for the
National Background Investigation Services Program, GAO-23-105670 (Washington,
D.C.: August 17, 2023).

Source: GAO. I GAO-24-105506

GAO has developed processes and identified best practices for program
monitoring and control in formal guides available on its website. A
summary of the two most relevant guides is included here.

GAO Cost Estimating and Assessment Guide: First released in 2009,
the Cost Guide was revised using solicited comments and the new
version was released in 2020.59 The Cost Guide establishes a consistent
methodology based on best practices that federal agencies can use for
developing, managing, and evaluating program cost estimates. Best
practices related to program monitoring processes, such as Earned Value
Management, are also included. The importance of having a reliable cost
estimate that reflects best practices cannot be emphasized enough

59GAO, Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs GAO-20-195G, (Washington, D.C.: Mar 12, 2020).

https://www.gao.gov/products/GAO-23-105670
https://www.gao.gov/products/GAO-20-195G

Chapter 4: Overview of Agile Execution and
Controls

Page 88 GAO-24-105506 Agile Assessment Guide

because as resources become scarce, competition for them will increase.
It is imperative, therefore, that government acquisition programs deliver
capabilities as promised, not only because of their value to their
customers but also because every dollar spent on one program will mean
one less dollar available to fund other efforts.

GAO Schedule Assessment Guide: First released in 2016, the
Schedule Guide is a companion to the Cost Guide.60 Because a cost
estimate cannot be considered credible if it does not account for the
phasing of costs over time as well as the cost effects of schedule
slippage, the Schedule Guide provides an effective methodology for
developing, managing, and evaluating program schedules. It draws on
the scheduling concepts introduced in the Cost Guide and presents them
as 10 detailed best practices associated with developing and maintaining
a reliable, high-quality schedule. The Schedule Guide also presents
guiding principles for auditors to evaluate certain aspects of government
programs.

While cost estimating, earned value management, and scheduling best
practices apply to Agile development programs, there are some
considerations that must be understood, such as recognizing that specific
Agile documents may already contain metrics and data that can be
mapped to traditional management tools to accomplish the same results.
Chapter 7 will examine in more detail how program monitoring and control
processes and best practices can be used in partnership with an Agile
work breakdown structure and Agile principles to ensure a successful
program.

60GAO, Schedule Assessment Guide: Best Practices for Project Schedules, GAO-16-89G
(Washington, D.C.: Dec. 22, 2015).

https://www.gao.gov/products/GAO-16-89G

Requirements Development and
Management in Agile

Chapter 5

Chapter 5: Requirements Development and
Management in Agile

Page 90 GAO-24-105506 Agile Assessment Guide

Sound management practices are critical for the success of any program,
including one using iterative and incremental development methods such
as Agile. These practices include establishing what the system is to do,
how well it will perform those functions, and how it will interact with other
systems.61 GAO has published a body of work that identifies the activities
and best practices used to develop and manage the requirements for a
system development program.62 This chapter identifies how traditional
requirements development and management processes can be adapted
for Agile programs, and highlights key considerations when assessing
compliance with policy and standards for these processes.

For the purposes of this guide, we use the term ‘requirements’ to
represent all development work because it is a generally understood
concept from Waterfall development. However, in Agile development the
term requirement is rarely used. Instead, it is replaced with terms such as
‘epic’ or ‘user story’ and often represents a capability, feature, sub-
feature, or more granular expectation for the system being developed.
The specific terminology will be unique to each organization, which
means it is important for the organization to be explicit in defining each
term and applying that definition consistently within a team, program, or
organization. The terminology will also be based on the duration of the
work or planning exercise. For example, a feature or epic may be

61It is important to distinguish between development of software requirements and the
acquisition process. Many federal programs rely on contractors to provide subject matter
expertise in the drafting of contract work statements which help define the requirements
and what will be performed under the contract. Variability will often occur in the actual
management of those requirements rather than the high-level requirements themselves.
For example, in an acquisition, criteria are established to designate appropriate channels
or official sources from which to receive requirements. Those who receive requirements
conduct analyses of them with the provider to ensure that a compatible, shared
understanding is reached on the meaning of requirements. The result of these analyses
and dialogs is a set of approved requirements that will be included in the software build.
Chapter 6 offers further discussion of how to structure a contract to allow for requirements
flexibility during development.

62GAO, Framework for Assessing the Acquisition Function At Federal Agencies,
GAO-05-218G (Washington, D.C.: Sept. 1, 2005); Information Technology: Management
Improvements Are Essential to VA’s Second Effort to Replace Its Outpatient Scheduling
System, GAO-10-579 (Washington, D.C.: May 27, 2010); FEMA: Action Needed to
Improve Administration of the National Flood Insurance Program, GAO-11-297
(Washington, D.C.: June 9, 2011); Information Technology: Critical Factors Underlying
Successful Major Acquisitions, GAO-12-7 (Washington, D.C.: Oct. 21, 2011); Defense
Major Automated Information Systems: Cost and Schedule Commitments Need to Be
Established Earlier, GAO-15-282 (Washington, D.C.: Feb. 26, 2015).

Chapter 5: Requirements Development and
Management in Agile

https://www.gao.gov/products/GAO-05-218G
https://www.gao.gov/products/GAO-10-579
https://www.gao.gov/products/GAO-11-297
https://www.gao.gov/products/GAO-12-7
https://www.gao.gov/products/GAO-15-282

Chapter 5: Requirements Development and
Management in Agile

Page 91 GAO-24-105506 Agile Assessment Guide

discussed and committed to for a release, whereas an iteration may focus
on the individual user stories that make up the feature or epic.

As discussed in chapter 4, Agile programs typically incorporate five levels
of planning to progressively define all work. At the highest level, the vision
provides teams with a top-level plan, while at the lowest level, the daily
work reflects specific activities that team members can accomplish in a
single workday. After establishing a vision, the program will typically elicit
a preliminary set of very general operating requirements from all users.
Discovery-level user research conducted by designers can also inform
this list. Discovery occurs early and involves the user as soon as
possible. The process for eliciting requirements could take the form of
surveys, face-to-face communication, or a combination of different user-
research techniques. Requirements are often still vague after this
exercise. In Agile, the requirements gathered at this phase are called
epics and they are grouped into general themes.

An epic can help teams reach agreement with governance bodies on the
priorities for the larger objectives of the program. It is up to the
organization to determine the level of specificity that requirements are
committed to for each governance body and to weigh the benefits of
added governance from, for example, an additional layer of review and
approval.63 A program may commit to a set of operating requirements
with a department investment review board, refine capabilities with a
component review board, detail features or sub-features within a
component’s or program’s integrated program team, and define discrete
user stories with a dedicated product owner. These commitments are
then reflected in artifacts associated with those touch points, such as a
program road map approved by an investment review board, a release
plan associated with the component review board or lower-level
integrated program team, and a backlog for management by the product
owner.64 As previously discussed, it is important to afford the product
owner the autonomy to rank requirements without having to consult a
governance body of organizational leadership once the body has agreed

63In chapter 3 of this guide, we highlight the potential risks an organization may incur if it
does not modify the acquisition and software life cycle processes to accommodate Agile
methods.

64Requirements in Agile development can be thought of as both strategic and tactical. A
set of strategic requirements is necessary to justify a program, and one can generally
assign a work breakdown structure and some form of earned value management
measurement to achieving these goals. The tactical requirements are the lower-level
requirements capturing the features customers and stakeholders are looking for.

Chapter 5: Requirements Development and
Management in Agile

Page 92 GAO-24-105506 Agile Assessment Guide

to a vision and associated epics. Restricting this autonomy presents a risk
to the program and could lead to delays in delivering functionality.

As an Agile program anticipates the development of a theme or epic in
the near-term, the program should define the requirements into smaller
and more granular efforts so that the team can properly plan and execute
the work. This process may occur at various levels and with different
personnel, depending on the stage of requirements decomposition.
However, the end goal of the program is to have a set of user stories that
can be discussed and further understood by the Agile teams and the
product owner on a routine basis.

Agile in Action 2: Requirements decomposition

In July 2016, we observed release planning for the National Nuclear Security
Administration Program Management Information System Generation 2 (G2) program.
G2 used a requirements hierarchy that allows teams to plan for, manage, and execute
a project. Officials said that this was helpful for clearly defining and communicating
requirements from National Nuclear Security Administration stakeholders and
customers through the federal program manager, product owners, and development
team. According to documentation provided, the requirements hierarchy decomposed a
program down into smaller, more manageable efforts. Specifically, there were four
levels to G2’s hierarchy: road map, feature, user story, and task, with specific periods of
time associated with each level.

Officials said that the road map was the program’s strategic vision, which provided
release planning information for the current development cycle and next three cycles (3
months of work, each). The road map was used to facilitate conversations with the
program’s multiple customers to define and time box desired system features. Features
comprised level 2 of the requirements hierarchy. Requirements were captured as
uniquely numbered features in the backlog; each feature was the starting point for
estimating level of effort and requirements were approved for work at the feature level.

Documentation showed that level 3 of the requirements hierarchy was composed of
user stories. As features were entered in the backlog, they were decomposed into user
stories (e.g., requirements that can be addressed in one iteration). Officials said that to
ensure requirements traceability, as both features and user stories are entered, a work
breakdown structure (WBS) number was assigned. Because of the widely varying
scope of application requirements, a designated WBS numbering scheme (as defined
in the G2 System Requirements Specification) was used. Tasks were level 4 of the
requirements hierarchy. They were the detailed requirements that could be completed
in 1 day and were assigned to one person to help maintain accountability. This four-
level requirements hierarchy provided traceability for the requirements through all the
program’s planning documents, visibility for multiple customers engaged in the
program, and accountability for the development team.

Source: GAO. I GAO-24-105506

Chapter 5: Requirements Development and
Management in Agile

Page 93 GAO-24-105506 Agile Assessment Guide

Agile values and principles provide guidance for the process an Agile
team uses to develop and manage the requirements for a program. Agile
does not provide a detailed, specific method to be used to perform these
tasks and allows the team flexibility to choose a method. For example, a
team may follow the Scrum concept of product backlogs consisting of
ordered backlog items that are represented on a task board based on
specific commitments made each iteration. Alternatively, a team may
follow the Kanban concept of continuous flow and rely on a Kanban board
that is not reset because the concept deemphasizes use of time-boxed
iterations.

Because Agile affords such flexibility in requirements development and
management, each program will be unique depending on the Agile
framework it has adopted and the organization’s governance
requirements. This guide considers both product backlog items and user
stories to be a form of requirements. The difference is in the structure and
expectations for communicating those requirements. In an Agile
environment, the techniques, resulting work products, and frequency for
each goal may change, impacting how an auditor might evaluate
compliance with existing best practices. The following sections describe
how a best practice might be modified in Agile and potential associated
artifacts that can help a program meet the intent of the best practice.

The following best practices will be discussed in this chapter:65

• Elicit and prioritize requirements.
• Refine requirements.
• Ensure requirements are complete, feasible, and verifiable.
• Balance customer and user needs and constraints.
• Test and validate the system as it is being developed.
• Manage and refine requirements.
• Maintain traceability in requirements decomposition.
• Ensure work is contributing to the completion of requirements.

Figure 7 shows an overview of requirements management best practices
and table 6 following the figure summarizes the best practices.

65These practices were developed as explained in appendix I.

Chapter 5: Requirements Development and
Management in Agile

Page 94 GAO-24-105506 Agile Assessment Guide

Figure 7: Overview of Requirements Management Best Practices in Agile

Table 6: Summary of Agile Requirements Management Best Practices

Best practices for Agile
requirements management

Summary

Elicit and prioritize requirements • A strong commitment exists to ongoing elicitation and refinement of new
requirements to meet the changing needs of both the organization and the user,
along with the evolving technical landscape, while managing requirements already
defined.

• The process relies on surveys, forums, and other user research methodologies in
order to effectively understand the needs of the organization and users.

• Non-functional requirements are accounted for using regulations or elicited through
coordination with users throughout the organization.

Refine requirements • Requirements are further refined as part of ongoing backlog refinement.

Ensure requirements are complete,
feasible, and verifiable

• Prior to development, an overall definition of done and acceptance criteria for
requirements are established.

• A definition of ready may also be established as Agile teams work to set an
expectation of the level of detail needed before teams can start development on a
user story.

Balance customer and user needs and
constraints

• A consistent process is in place to measure the value of work to ensure that user
stories are developed based on relative value.

• Backlog refinement is an ongoing, collaborative process between the product owner
and the developers.

Test and validate the system
as it is being developed

• Continuous integration and automated testing are used in the build process.
• The product owner agrees and accepts the definition of done for each user story.

Chapter 5: Requirements Development and
Management in Agile

Page 95 GAO-24-105506 Agile Assessment Guide

Best practices for Agile
requirements management

Summary

Manage and refine requirements • Additions and refinements to requirements are managed efficiently and effectively in
an evolving ranked backlog.

• The backlog contains functional and non-functional requirements and bugs or defects
representing revisions to existing functionality.

Maintain traceability in requirements
decomposition

• Requirements can be traced from the source requirement (e.g., feature) to lower-level
requirements (e.g. user story) and back again.

• The program uses Agile artifacts, such as a road map, to ascertain requirements
traceability.

Ensure work is contributing to the
completion of requirements

• Agile teams are continuously working on tasks that directly contribute to the
completion of user stories committed to for that iteration.

• The product owner and Agile teams ensure that the committed user stories contribute
to the commitments made to oversight bodies.

Source: GAO analysis of CMMI v. 1.3, PMI, and SEI documentation. | GAO-24-105506

Officials can analyze and validate Agile program requirements through
various tests; however, the amount of time devoted to the up-front
planning and identification of the requirements will be much shorter than
when using a Waterfall or another non-Agile development approach.66
Instead of strictly setting all requirements at the outset of the program,
Agile methods require a strong commitment to ongoing elicitation and
refinement of requirements to meet the changing needs of both the
organization and the user and the evolving technical landscape while
continually managing the requirements that have already been defined. If
there is not a strong commitment to ongoing elicitation and refinement of
requirements, the delivered software may not meet these needs.

The process for eliciting needs, expectations, and constraints that
comprise the vision and the initial set of epics for an Agile program
provides an opportunity to understand if the software will achieve the
intended outcomes for the organization and users. The process relies on
surveys, forums, and other user research methodologies to understand
the needs of the organization and users.67 The overall vision for a
program should not change during its life, but because detailed
requirements remain flexible in an Agile program, ongoing elicitation can
occur. Furthermore, an organization may have various levels at which

66The importance of modifying the acquisition life cycle to accommodate flexible
requirements is discussed further in chapter 3 under the practice “Organizational
processes support Agile methods”.

67As previously discussed, it is important to afford the product owner the autonomy to rank
requirements without having to consult a governance body of organizational leadership
once the body has agreed to a vision and associated epics.

Elicit and prioritize
requirements

Chapter 5: Requirements Development and
Management in Agile

Page 96 GAO-24-105506 Agile Assessment Guide

requirements are defined and each layer of requirements might have a
different approach to eliciting needs, expectations, and constraints, as
well as a different process for prioritizing decisions. The minimum viable
product (MVP) is a valuable tool to elicit feedback by demonstrating
aspects to the developing solution.

Minimum viable product (MVP)

A concept popularized in Eric Ries’ 2011 book, The Lean Startup, the MVP is a
version of a working product that allows the team to learn from and interact with their
customer with the least amount of effort.a An MVP allows the team to better
understand their customers’ needs and interests. It provides the initial set of
capabilities needed for customers to recognize value. If done correctly, the MVP can
allow a team to refine the product early in development to ensure it meets customer’
needs rather than later in development when updates might be expensive or cost-
prohibitive. This could mean significant updates to the product or even abandonment
of the product altogether, but ensures the team is working on a product that the
customer actually wants. However, teams must remember that an MVP is only
valuable if the product is sufficiently developed to allow for customer interaction and
to elicit feedback and learning. The MVP should not simply represent the smallest
piece of functionality.

Source: GAO. I GAO-24-105506
aEric Ries The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. (New York, New York: Crown Publishing Group, 2011).

Stakeholders, users, and customers will continue to propose
modifications to the system (e.g. new lower-level requirements) in
response to demonstrations of the functionality of the user stories.
Reviews allow the organization to observe the system and communicate
additional functionality or modifications to existing functionality for the
developer. The product owner can capture this feedback in the backlog
for consideration, even if the suggested functionality cannot be
incorporated into the system. To do this, the program must have a
process in place to field suggestions from users interacting with the
system. In doing so, the product owner should also proactively seek out
users to inform future requirements. If the product owner does not capture
feedback from reviews for consideration, there will not be a historical
record of proposed requirements or modifications for reference. The lack
of a documented change control process could hinder decision makers’
insight into the true value of delivered features.

Agile methods emphasize user-facing requirements. These are
requirements for the system to perform a specific function, such as the
ability to search information or aggregate data. However, when the focus

Chapter 5: Requirements Development and
Management in Agile

Page 97 GAO-24-105506 Agile Assessment Guide

on functionality becomes exclusive, the underlying (non-functional)
system requirements can go unnoticed.68 For example, when building out
a search function, the team may not account for potential privacy issues
associated with access to user data. Non-functional requirements can be
derived from regulations or can be elicited through coordination with
users from other divisions within the organization, such as security or
privacy groups. As with functional requirements, non-functional
requirements will be added, modified, or removed over time, based on
ongoing communication between the product owner and users.

There are several options for capturing non-functional requirements. One
option is to define each discrete requirement as a separate user story that
traces to a non-functional feature such as architecture. Another option is
to continue building the “definition of done” or acceptance criteria for each
functional requirement to include the non-functional requirements. For
example, a product owner might require the developers to demonstrate
that they have successfully load or stress tested a piece of functionality in
the pre-production environment before accepting the user story as
complete. Due to time and resource constraints, a team or program may
adopt the practice of testing some of the non-functional requirements
outside of the iteration. For example, although unit, integration, and
functional testing may be required prior to user story acceptance, an
architecture team may test performance and customer satisfaction
separately just prior to a release.69

68Non-functional requirements are discussed in chapter 3 under the practice “Technical
environment enables Agile development.”

69Delaying testing can present a risk to the development team. If tests, such as
performance testing, are not performed on an ongoing basis, hidden problems can
propagate to the point where performance problems might be nearly impossible to find.
The team should consider the tradeoff between resource availability and the potential
delay from re-development in deciding on the best approach to testing.

Chapter 5: Requirements Development and
Management in Agile

Page 98 GAO-24-105506 Agile Assessment Guide

Non-functional requirements: Privacy

As technology evolves, it is important that agencies manage information systems in a
way that addresses and mitigates security and privacy risks associated with new
information technologies and new information processing capabilities. For Agile
development programs, much of the privacy stakeholders’ role is not to add items to
the backlog, but to examine potentially unnecessary features (particularly related to
data collection) and to ensure that other features are defined with privacy in mind.
Further, it is important that information security and privacy are fully integrated into
the system development process. To ensure that the non-functional requirements
capture privacy concerns, a privacy plan (e.g., a formal document that details the
privacy controls selected for an information system or environment of operation)
should be in place.

Source: GAO. I GAO-24-105506

Product owners should work with developers, customers, and users as
time allows to prioritize or sort requirements in the product backlog that
should be developed sooner rather than later. The approach for
determining such prioritizations and refining the backlog includes
considering the importance of specific requirements that support
achieving the system’s overall goals, as well as technical considerations
such as non-functional requirements that need to be developed to support
critical system functions.70

70The terms “priority” or “prioritize,” within the context of a backlog, refers to the relative
value a piece of work has to the success of an iteration or project, as determined by the
product owner at a point in time. Priority does not necessarily represent the importance of
work or diminish the value of work proposed by a stakeholder but ranked lower than
competing work. For example, a product owner may choose to prioritize work with a
higher level of risk but lower overall importance to the organization in order to mitigate the
risk and keep the project moving forward. In grooming the backlog, the product owner will
continue to make value judgments throughout the life of a project and often modify
prioritization levels based on the environment and organizational needs.

Chapter 5: Requirements Development and
Management in Agile

Page 99 GAO-24-105506 Agile Assessment Guide

Case study 12: Program level backlog, from Space C2,
GAO-23-105920

In June 2023, GAO reported Space C2 program documentation does not include a
program-level backlog that reflects changes or additions to requirements. Our analysis
found that Space C2 does not maintain a backlog that shows the entirety of the
program’s development activities. As a result, Space C2 is introducing additional risk to
its development because the program lacks information that shows how it plans to
address ongoing or incomplete work along with future work to meet requirements. This
is a risk for two reasons: (1) Space C2 routinely underperformed during earlier program
increments, and (2) the program is delivering incomplete applications that will need
additional development work. The absence of a program-level Space C2 backlog
increases the likelihood Space C2 will not deliver on priority requirements.

Without a program-level backlog, Space C2 risks continuing to deliver applications that
do not align to users’ most critical needs and prevents program managers from having
a holistic view of the program. As a result, Space C2 could continue to prioritize non-
critical development activities and further delay completion of ATLAS. By tracing a
lower level of development activity back to a higher-level requirement and aligning
development activities to requirements, Space C2 can demonstrate to what extent
managers are addressing development shortfalls from earlier program increments and
report progress in meeting program goals.

GAO, Space Command and Control: Improved Tracking and Reporting Would Clarify
Progress amid Persistent Delays, GAO-23-105920 (Washington, D.C.: June 8, 2023).

Source: GAO. I GAO-24-105506

Once requirements have been elicited or identified from the organization
and users, they will need to be evolved and fine-tuned as part of backlog
refinement. Because requirements are the least understood at the outset
of an Agile program, programs are expected to learn as they progress
through development. In order to take advantage of this learning, a
program can identify and incorporate new requirements by continuing to
elicit user feedback or eliminate requirements previously thought to be
essential. If Agile programs do not learn to discover and refine
requirements throughout the development process, a program may miss
an opportunity to incorporate newly identified requirements or eliminate
requirements previously thought to be essential, which could create a
disconnect between deployed software functionality and the customer’s
needs. The concept of backlog refinement is addressed in our discussion
of other practices in this chapter.

Refine requirements

https://www.gao.gov/products/GAO-23-105920
https://www.gao.gov/products/GAO-23-105920

Chapter 5: Requirements Development and
Management in Agile

Page 100 GAO-24-105506 Agile Assessment Guide

Case study 13: Backlog refinement, from TSA Modernization,
GAO-18-46

In October 2017, GAO reported that the Transportation Security Administration’s
Technology Infrastructure Modernization (TIM) program was expected to manage a
backlog for each software release. The backlog was to identify features and their
derived user stories (the smallest and most detailed requirements) that were to be
delivered in a specific release. Each feature and user story was to be assigned a
priority level to determine the order for development of the next release and associated
sprint.

GAO found the program’s backlogs did not contain prioritization levels for each of the
features and user stories, as called for in Department of Homeland Security (DHS)
guidance. According to program officials, instead of assigning specific prioritization
levels, they identified which features should be developed within the near term (e.g., in
the next several Agile releases). Program officials recognized that they still needed to
prioritize their backlogs by assigning priority levels to all features and user stories, but
they did not have a time frame for completing this effort.

Without ensuring full prioritization of current and future features and user stories, the
program was at risk of delivering functionality that was not aligned with the greatest
needs of the customers, who were responsible for conducting security threat
assessments to protect the nation’s critical transportation infrastructure.

GAO, TSA Modernization: Use of Sound Program Management and Oversight
Practices is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington,
D.C.: October 17, 2017).

Source: GAO. I GAO-24-105506

Prior to development, the team is expected to define, overall, what
completion, or “done,” is for that team. If there are multiple teams working
on the system or product release, the teams should also agree on a
mutual definition of done. As teams mature, their definitions of done will
become more comprehensive. However, not having clear criteria and an
established definition of done introduces uncertainty into the development
process.

Ensure requirements are
sufficiently complete, feasible,
and verifiable for the current
state of the program

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-18-46

Chapter 5: Requirements Development and
Management in Agile

Page 101 GAO-24-105506 Agile Assessment Guide

Case study 14: Definition of done, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS), in
guidance available to programs on requirements engineering, highlighted that
acceptance criteria defines the boundaries of a user story and confirms when a story
has been completed and is working as intended. Further, the definition of done
identifies all of the activities/artifacts besides working code that must be completed for a
feature or sub-epic to be ready for deployment or release, including testing,
documentation, training material development, certifications, etc.

Within DHS, the U.S. Immigration and Customs Enforcement (ICE) Student and
Exchange Visitor Information System (SEVIS) program generally followed this guidance
with most of its user stories including acceptance criteria. The program also developed
a “definition of done” for all user stories. According to the definition, a user story was
“done” when the following steps had been addressed:

• All code to meet the story’s needs was written according to the system’s
development standards.

• Unit tests were written and run successfully.

• All code was checked in and the build completed successfully.

• All database changes (if required) were complete and checked in (a functional
test could be run).

• The software had been deployed to the system test environment and passed
system tests.

• The product owner agreed that the implementation met the acceptance criteria
written in the story as appropriate.

• All documentation required to support the story was completed (test cases,
interface updates, etc.).

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Source: GAO. I GAO-24-105506

In addition to a definition of done and acceptance criteria, Agile teams
may also use a “definition of ready” for user stories. A definition of ready
sets expectations for the level of detail required before a team begins
work on that user story. For example, the team may agree that no work
on a user story can begin until it estimates the relative complexity of the
user story and defines the acceptance criteria for the user story. Since
detailed requirements evolve throughout the program, a definition of
ready helps to ensure that participants work on only the most current and
highly ranked requirements and that those requirements always reflect

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 5: Requirements Development and
Management in Agile

Page 102 GAO-24-105506 Agile Assessment Guide

updates to plans, activities, and work products. Without clear definitions
for ready, acceptance, and done, the team may be working inefficiently
and on requirements that are not high ranking.

Spike

As requirements evolve and an Agile team begins to decompose, prepare for, and
estimate user stories, there can be instances where the user story is challenging to
estimate. This might be due to design questions or a technical challenge that the
team is not experienced in working through. Derived from eXtreme Programming
(XP), a spike can serve as a placeholder user story that represents the research a
team needs to undertake in order to better understand a user story and thereby more
effectively estimate its size.

Source: GAO. I GAO-24-105506

Waterfall development sets an expectation that all requirements are
established at the start of the program and their value is relatively fixed. In
Agile, where requirements are continuously being discovered and refined,
the program is continually developing functionality to match the
requirements. In doing so, the program can maintain flexibility and offer
the option for the organization to end the program at any point if it feels
the system is not meeting the original vision and the needs of its
customer and users71, or if external constraints require that the program
be discontinued.

71The features of a system may change but the backlog should never be empty unless a
program is formally ended. While a contract for software development and the associated
work may end, the system and associated backlog will continue.

Balance customer and user
needs and constraints

Chapter 5: Requirements Development and
Management in Agile

Page 103 GAO-24-105506 Agile Assessment Guide

Case study 15: User story prioritization, from DHS Acquisitions,
GAO-20-170SP

In December 2019, GAO reported that, in November 2018, Department of Homeland
Security (DHS) leadership approved the Transportation Security Administration’s (TSA)
Technology Infrastructure Modernization (TIM) program’s request to descope and
change its definition of full operational capability (FOC) to include only the
Transportation Worker Identification Credential (TWIC) and TSA Pre√® capabilities. By
the time TIM had fully delivered capabilities for TWIC and TSA Pre√®, TSA had made
ongoing updates and improvements to the remaining legacy vetting and credentialing
systems to meet security and mission demands, which had also sufficiently met end
user needs. According to TSA officials, any additional system development would
produce redundant functionality.

The program updated its key acquisition documents, including its acquisition program
baseline and life cycle cost estimate to reflect the change in scope. In July 2019, DHS
leadership approved the program’s revised acquisition program baseline. DHS
leadership granted the program acquisition decision event 3 and acknowledged the
program’s achievement of full operating capability—fulfilling TSA Pre√® and TWIC
mission needs for vetting and credentialing—in August 2019. We reported that DHS
attributed a $220 million decrease in the program’s baseline acquisition cost goal to this
scope decrease; however, the program’s operations and maintenance cost goals
increased by $205 million. This increase was primarily due to maintenance of legacy
systems to address user needs.

GAO, Homeland Security Acquisitions: Outcomes Have Improved but Actions Needed
to Enhance Oversight of Schedule Goals, GAO-20-170SP (Washington, D.C.:
December 19, 2019).

Source: GAO. I GAO-24-105506

The value of individual requirements is subjective and, in Agile, its
determination is often left up to the product owner. The product owner
should have some consistent processes for calculating the value of work
and ensuring that user stories are being developed based on relative
value (e.g., that the work is prioritized based on its value to the users and
customer). For example, a product owner may choose to value high-risk
work early in a release to mitigate the likelihood of encountering delays
later in development that can require substantial re-work. Alternatively, a
developer may prioritize work based solely on resource availability with
regard to time, money, or staff. Other times the work will be valued based
on a holistic consideration for cost, complexity, risk, availability of staff, or
any number of other categories. Each consideration represents the
developer balancing organization needs and constraints.

https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-170SP

Chapter 5: Requirements Development and
Management in Agile

Page 104 GAO-24-105506 Agile Assessment Guide

The product owner reviews and prioritizes user stories in a backlog based
on the relative value of each user story at a specific point. As part of
backlog refinement, the product owner adds detail, estimates, and
prioritizes the user stories in the backlog. The Agile team, or at times the
entire program, decides how and when refinement is to be performed.
However, user stories can be updated at any time at the discretion of the
product owner. Suggestions from organization personnel should also be
incorporated into the backlog and considered by the product owner.

Higher prioritized user stories are usually clearer and more detailed than
lower prioritized user stories. More precise estimates are made based on
the greater clarity and increased detail of a requirement; the lower the
order, the less detail. Figure 8 illustrates the concept of a prioritized
backlog.

Figure 8: Prioritized Backlog for an Agile Program

Chapter 5: Requirements Development and
Management in Agile

Page 105 GAO-24-105506 Agile Assessment Guide

Problems can arise if the product owner does not consider the relative
value of the work. For example, critical user stories can end up being
developed just prior to deployment. While there are situations where this
can occur, such as with a very mature requirements decomposition
process with an experienced product owner, often this is a sign that the
product owner is not prioritizing the requirements and is developing
functionality that is not immediately necessary. This practice of
developing each and every user story can lead to problems if funding is
reduced mid-iteration, mid-release, or mid-program, or other external
factors impede the progress of the development work. Further, when the
product owner does not consider the relative value of work, the team may
develop functionality that is not immediately necessary to meet customer
needs. If the highest value requirements are not completed first, the users
may be left without necessary functionality. The best practice is to
prioritize and order requirements with those of the highest value being
completed first so that if funding ends, the customer will still benefit from
the work that has been completed to date.

In an Agile environment, teams routinely build and test the software
through continuous integration and automated testing.72 Continuous
integration merges all developer working copies to ensure they function
as intended through an automated process by repeatedly integrating the
code multiple times a day. However, continuous integration is only as
strong as the automated testing used in the build process. If a build fails,
the developer should address the issue and resubmit the code for
continuous integration. Once successfully built and adopted into the code
base, the developer and organization can gain confidence that the code
will execute properly in the future.

Code may not meet the requirements of the original user story even if its
quality is good. Then, as part of the backlog refinement process, the team
establishes the definition of done and defines acceptance criteria for each
user story, so that the developers and product owner have a shared
understanding of what it means for a piece of work to be considered
complete. The definition of done encapsulates both the completion of
acceptance criteria and additional activities, such as testing or
compliance checks. User story acceptance criteria are specific to just one
user story and documents the product owner requirements that must be
met, whereas the definition of done applies to all user stories. To validate

72In chapter 3 of this guide, we highlight the potential risks an organization and program
may incur if the organization does not stand up an environment for automated testing and
instead relies on manual tests.

Test and validate the system
as it is being developed

Chapter 5: Requirements Development and
Management in Agile

Page 106 GAO-24-105506 Agile Assessment Guide

that requirements have been met, the product owner should identify
acceptance criteria for every user story prior to development of the story
(often as part of backlog refinement or planning for an iteration) and the
program should agree on a definition of done (e.g., must meet
acceptance criteria and be section 508 compliant).73

The acceptance criteria and definition of done constitute the expectations
for the user story against which the requirement will be validated and
either accepted or rejected by the product owner. Depending on the
nature of the acceptance criteria, this may require manual interaction with
the system by the product owner or organization. Validation of a user
story is performed either as part of a user story demonstration or as part
of a review at the end of each iteration. Although the product owner is
ultimately responsible for the user story, such demonstrations and
reviews allow other users and customers to observe the functionality and
weigh in on whether it meets the intended purpose or requires further
refinement. Just because a product owner accepts a user story as
complete does not mean that it has been adequately tested according to
traditional testing standards in order to fully validate the requirement, or
that the story meets the original intent of the users and customers.74
Gaining this assurance often requires usability testing with real users at
regular, continuous intervals to supplement product owner acceptance
and demonstrations of functionality by the development team. Usability
tests can further serve to draw in users who do not participate in internal
demonstrations. If users and customers are not involved in the review and
acceptance process for software functionality, the software may not meet
the intended purpose.

Detailed requirements can change as work proceeds and new
requirements are defined. As with developing requirements at the start of
a new program, it is important that the additions and refinements are
managed efficiently and effectively. In Agile, there will be less formality
around the refinements process as a program has flexible lower-level
requirements and Agile empowers the product owner to prioritize
requirements as necessary. Agile does not prescribe how a product
owner should elicit requirements or order and refine the backlog. Instead,
the product owner selects a process that allows them to maximize the

73Section 508 of the Rehabilitation Act of 1973 (as amended) requires federal agencies to
make their electronic information accessible to people with disabilities.

74The level of testing will depend on the product being developed and the rigor defined in
the agreed-on definition of done.

Manage and refine
requirements

Chapter 5: Requirements Development and
Management in Agile

Page 107 GAO-24-105506 Agile Assessment Guide

value of software delivered during each iteration. If this process is too
inflexible, it becomes a change prevention process and user needs will
not be adequately incorporated into the program, making it less useful to
users than intended. However, if this process is too flexible, then
boundless development can occur and the organization may not receive
the full value that it requires. Chapter 6 discusses how this can be
managed from a contracting perspective.

As previously discussed, requirements are maintained in the prioritized
backlog for an Agile program. However, a backlog is never complete; it
constantly evolves to meet new requirements. The earlier backlogs lay
out the initially known and best-understood requirements. As the backlog
evolves, the system being developed and the processes governing
development become better defined. As long as a program exists, its
backlog will contain user stories representing discrete pieces of new
functionality to be developed and bugs or defects representing revisions
to existing functionality. User stories may represent both functional and
non-functional requirements.

When requirements are managed well, they can be traced from the
source requirement to lower-level requirements and back again. Such
traceability helps to determine whether all source requirements have
been completely addressed and whether all lower-level requirements can
be traced to a valid source.

Agile considers only the work without regard to the terminology or
hierarchical structure used to define it (e.g., capability vs feature vs sub-
feature). However, the product owner must justify to oversight groups the
value that is being developed in each iteration. This means tracing a user
story back to its high-level requirements that the program committed to
with oversight bodies. Without such traceability, a program cannot justify
whether it is meeting these commitments and, in turn, contributing to the
goals of the program, thereby providing value.

In a Waterfall development, traceability is demonstrated through a
requirements traceability matrix. In lieu of a requirements traceability
matrix, Agile development requirements can be traced through Agile
artifacts, such as the road map and the backlog.

Maintain traceability in
requirements decomposition

Chapter 5: Requirements Development and
Management in Agile

Page 108 GAO-24-105506 Agile Assessment Guide

Case study 16: Requirements traceability, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that Department of Homeland Security (DHS) guidance on
requirements engineering recognized that, as a program progressed through the
acquisition and systems engineering life cycles, it was important to trace requirements
from the top-level mission needs or capabilities or business requirements down to the
system/sub-system, component, or configuration item level that enabled those
requirements to be met. This helped ensure continuity across various DHS artifacts,
such as the program’s mission needs statement, concept of operations, and
operational requirements document, to vendor specifications (or applicable equivalent
artifacts). This guidance recommended a series of artifacts that an Agile program could
develop to ensure this traceability.

Within DHS, GAO reported that the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program generally followed
this guidance. The program developed user stories based on business capabilities and
other requirements as determined by the product owner and the business stakeholders.
The program’s operational requirements document described eight business
capabilities that represented core SEVIS functions. According to ICE SEVIS officials,
these business capabilities were addressed through user stories, and there was
traceability in the backlog from user stories to epics to business capabilities/operating
requirements.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Source: GAO. I GAO-24-105506

Agile focuses on iterations and the extent to which working software is
delivered rather than on plans and work products.75 Each iteration, teams
are expected to deliver software in accordance with a goal. As such, an
Agile team should always be working on tasks that directly contribute to
completing the user stories committed to for that iteration.76 Any work not
associated with those commitments (e.g., a tiger team initiated to fix an
issue for an unrelated team) is a misalignment between the requirements
and work and presents a risk to the program.

75As discussed earlier in this guide, teams applying the Kanban method will not rely on
iterations to time box development work. Instead, these teams will pull in new user stories
on a flow basis as user stories already being developed are completed.

76As the Kanban method does not use time boxed development, teams using the Kanban
method for development will not make commitments each iteration. However, teams will
still rely on a Kanban board and all work should contribute toward completing a user story
on that Kanban board.

Ensure work is contributing to
the completion of requirements

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 5: Requirements Development and
Management in Agile

Page 109 GAO-24-105506 Agile Assessment Guide

From a high-level planning perspective, programs will make commitments
to oversight bodies. As part of those commitments, teams should prepare
the streamlined artifacts required by oversight bodies. At least one of
these artifacts will require the phases and overall structure of program
development to be defined. It is then contingent on the team, and
primarily the responsibility of a product owner during development, to
ensure that the user stories contribute to the commitments made to the
oversight bodies. For example, a management plan may discuss
development in phases and a series of projects within each phase. If the
schedule of projects and phases and the scope of each project are
defined and committed to in advance, there should be alignment between
the user stories being developed and the scope of a specific project. In an
Agile program, a management plan can take the form of a program or
release road map, whereby capabilities or features for development are
laid out in a timeline and planned for future iterations.77

1. Elicit and prioritize requirements

a. There is a strong commitment to ongoing elicitation and
refinement of lower-level requirements to meet the changing
needs of both the organization and the user, and the evolving
technical landscape while managing requirements is already
defined.

b. The process relies on surveys, forums, and other user research
methodologies to effectively brainstorm the needs of the
organization and users.

c. Non-functional requirements are accounted for using regulations
or elicited through coordination with users throughout the
organization.

2. Refine requirements

a. Requirements are further refined as part of ongoing backlog
refinement.

3. Ensure requirements are complete, feasible, and verifiable

77In chapter 7, we highlight how Agile programs estimate cost and schedule. This chapter
discusses how requirements are defined and decomposed in order to create an overall
plan for the program.

Best Practices
Checklist:
Requirements
Development

Chapter 5: Requirements Development and
Management in Agile

Page 110 GAO-24-105506 Agile Assessment Guide

a. Prior to development, an overall definition of done and acceptance
criteria for requirements are established.

b. A definition of ready may also be established as Agile teams work
to set an expectation of the level of detail needed before
developers can begin work on a user story.

4. Balance customer and user needs and constraints

a. A consistent process is in place to measure the value of work and
ensure that user stories are developed based on relative value.

b. Backlog refinement is an ongoing, collaborative process between
the product owner and the developers.

5. Test and validate the system as it is being developed

a. Continuous integration and automated testing are used in the
build process.

b. The product owner agrees to and accepts the definition of done
for each user story.

6. Manage and refine requirements

a. Additions and refinements to requirements are managed efficiently
and effectively in an evolving prioritized backlog.

b. The backlog contains functional and non-functional requirements
and bugs or defects representing revisions to existing
functionality.

7. Maintain traceability in requirements decomposition

a. Requirements can be traced from the source requirement (e.g.
feature) to lower-level requirements (e.g. user story) and back
again.

b. The program uses Agile artifacts, such as a road map, to
ascertain requirements traceability.

8. Ensure work is contributing to the completion of requirements

Chapter 5: Requirements Development and
Management in Agile

Page 111 GAO-24-105506 Agile Assessment Guide

a. Agile teams are continuously working on tasks that directly
contribute to the completion of user stories committed to for that
iteration.

b. The product owner and Agile teams ensure that the committed
user stories contribute to the commitments made to oversight
bodies.

Agile and the Federal Contracting
Process

Chapter 6

Chapter 6: Agile and the Federal Contracting
Process

Page 113 GAO-24-105506 Agile Assessment Guide

Agile programs depend on using lessons learned from one release to the
next and should have flexibility to add staff and resources to adapt.
Changes to staff and resources may be necessary based on changes to
contract requirements. Federal procurement practices used for Waterfall
development programs can be adapted to support this flexibility for Agile
programs. The Federal Acquisition Regulation (FAR) was established for
the codification and publication of uniform policies and procedures for use
by all executive branch organizations in acquiring goods and services.78
The FAR helps organizations ensure that contracts deliver, on a timely
basis, the best value product or service to the customer. Prior to entering
into a contract for IT, organizations should analyze the risks, benefits, and
costs involved.

What does the FAR say?

“The FAR outlines procurement policies and procedures that are used by members of
the Acquisition team. If a policy or procedure, or a particular strategy or practice, is in
the best interest of the Government and is not specifically addressed in the FAR, nor
prohibited by law (statute or case law), Executive order or other regulation,
Government members of the Team should not assume it is prohibited. Rather,
absence of direction should be interpreted as permitting the Team to innovate and
use sound business judgment that is otherwise consistent with law and within the
limits of their authority. Contracting officers should take the lead in encouraging
business process innovations and ensuring that business decisions are sound.”

 FAR 1.102-4(e)

Source: GAO. I GAO-24-105506

Contracts for Agile development must likewise be consistent with the
FAR. While the FAR does not specifically discuss Agile development, it
does discuss contracting approaches that can be beneficial for Agile
development efforts. For example, the FAR implements authority to use
modular contracting, a method intended to reduce program risk and
incentivize contractor performance while meeting the government’s need
for timely access to rapidly changing technology.79 Similar to the Agile

78The FAR applies to executive branch agencies, including military departments, civilian
agencies, and NASA. The FAR does not apply to executive branch agencies that have
other statutory authority, for example, the FAR does not apply to the Federal Aviation
Administration pursuant to 49 U.S.C. §40110(d)(2)(G).

79Modular contracting was established in 41 U.S.C. § 2308 and is implemented in section
39.103 of the FAR.

Chapter 6: Agile and the Federal Contracting
Process

Chapter 6: Agile and the Federal Contracting
Process

Page 114 GAO-24-105506 Agile Assessment Guide

principle to deliver working software at intervals, modular contracting may
be divided into several smaller acquisition increments.

The FAR also authorizes the use of simplified procedures for the
acquisition of certain commercial items that fall between specified dollar
ranges. This is intended to maximize efficiency and economy, and to
minimize burden and administrative costs.80 In addition, OMB and GSA
have developed guides to help organizations apply the flexibility offered
by the FAR to facilitate the use of Agile practices. For example, OMB
issued the TechFAR handbook, which highlights flexibilities in the FAR
that can be used in partnership with the “plays” from the Digital Services
Playbook.81

As discussed in chapter 2, one challenge the federal government faces
for Agile adoption is ensuring that acquisition strategies and contract
structures truly support Agile programs. For example, government
contracts may be designed with heavily structured tasks and performance
checks that are not necessarily aligned with a program’s Agile methods or
cadence. These structured tasks can slow down the program’s Agile
cadence by establishing long contract timelines and costly change
requests that can cause major hurdles in executing Agile development.
Furthermore, contracts that may lack the flexibility to add staff and other
resources needed to meet the work planned for each release or that
cannot adapt to updates from one release to the next can work counter to
Agile adoption best practices and negatively impact a program’s ability to
perform well.

As discussed in chapter 3, long timelines to award the contract and costly
change requests are major hurdles in executing Agile programs, which
require frequent releases. Rather than avoiding using Agile for
development or relying solely on contracting methods that clash with
Agile development, organizations can mitigate their risks by ensuring the
contract supports Agile methods.

As with any contract, the government must determine the appropriate
contract vehicle based on its assessment of risk and the extent that such

80FAR 13.500.

81The U.S. Digital Services TechFAR handbook offers guidance on how to acquire
products and services in an Agile setting: https://playbook.cio.gov/techfar/. Guidance in
the TechFAR handbook can be used in partnership with the U.S. Digital Services
Playbook: https://playbook.cio.gov/.

https://playbook.cio.gov/techfar/
https://playbook.cio.gov/

Chapter 6: Agile and the Federal Contracting
Process

Page 115 GAO-24-105506 Agile Assessment Guide

risk will be shared with the contractor. Accepting reasonable risk in
contracts for IT is appropriate as long as risks are controlled and
mitigation processes are implemented. Risks can include schedule
problems, technical feasibility, dependencies between a new program
and other programs, the number of simultaneous high-risk programs to be
monitored, funding availability, and program management issues. While
all risks cannot be controlled, the best practices in this chapter highlight
aspects of contracting for Agile IT acquisitions to help address key risks
that should be considered when awarding and monitoring a contract.

Figure 9 shows an overview of acquisition best practices and table 7
following the figure summarizes the best practices.

Figure 9: Overview of Agile and Contracting Best Practices

Chapter 6: Agile and the Federal Contracting
Process

Page 116 GAO-24-105506 Agile Assessment Guide

Table 7: Summary of Agile and Contracting Best Practices

Contracting best practice Summary
Tailor acquisition planning and contract structure to
align with Agile practices

• Encourage the use of modular contracting.
• Enable flexibility for contract requirements.
• Decide to structure the contract for goods or services.

Incorporate Agile metrics, tools, and lessons learned
from retrospectives during the contract management
process

• Ensure that contract data requirements rely on Agile metrics.
• Enable contract oversight through data from the program’s Agile

artifacts.
• Conduct retrospectives to continually improve Agile methods based on

lessons learned.
• Ensure that contract oversight reviews align with the program’s Agile

methods and cadence.
Integrate the program office and the developers • Train program office acquisition, and contracting personnel.

• Identify clear roles for contract oversight and management.
• Ensure that all personnel are familiar with the contract’s scope.

Source: GAO. | GAO-24-105506

An organization’s contracting process must be deliberate and well
executed to support regular program delivery timelines. Contracting
strategies, processes, and the culture should create a business
environment that supports small, frequent releases and responds to
change, taking into consideration programmatic risks and the scope and
purpose of a program (e.g., whether it is a large weapon system or small
web application).

One technique to accomplish this is called modular contracting. Modular
contracting is when an organization’s need for a system is satisfied by
successive acquisitions of interoperable increments.82 It is intended to
reduce program risk and to incentivize contractor performance while

8241 U.S.C. § 2308(b).

Tailor acquisition
planning and contract
structure to align with
Agile practices
Encourage the use of modular
contracting

Chapter 6: Agile and the Federal Contracting
Process

Page 117 GAO-24-105506 Agile Assessment Guide

meeting the government’s need for timely access to rapidly changing
technology.83

Agile development is designed to provide usable capabilities rapidly. Use
of modular contracting practices can help an organization achieve these
compressed time frames by eliminating the costly lag between when the
government defines its requirements and when the contractor begins
delivering workable solutions. Achieving timely results requires the
contracting process to be in alignment with the technology cycle.

For IT investments that use modular contracting, a large acquisition may
be divided into several smaller acquisitions, each of which comprises a
system or solution that is not dependent on any subsequent increment in
order to perform its principal functions.84 In other words, the acquisition of
any single program should not commit the government to acquiring any
future systems. In addition, the program should avoid vendor lock-in by
making sure deliverables are properly tested and documented so that a
new vendor can continue work already begun if necessary. If each
program is not separable, then the government may need to acquire
future programs, which could be costly and burdensome. Modular
contracting divides investments into smaller parts in order to reduce risk,
deliver capabilities more rapidly, and permit easy adoption of newer and
emerging technologies.

Similar to when writing a solicitation for a Waterfall program, schedule
achievement, software quality, user acceptance, and product complexity
should all be considered when drafting a solicitation for an Agile
development program. For example, agencies should leverage market
research as a tool to ensure successful outcomes. Market research can
provide reliable, accurate information that will help shape requirements,
competitors, and ultimately the final product. Furthermore, a contract
governing an Agile development effort should provide sufficient structure
to achieve the desired mission outcomes, while also offering flexibility for
adaptation of software requirements within the agreed-on scope of the
system. Contract structure for Agile programs must be designed to
support the short development and delivery timelines that Agile requires.

While contracting for all development methods requires definition, Agile
contracts often define the Agile process and program objectives rather

83FAR 39.103(a).

84FAR 39.103(b)(3).

Enable flexibility in the
contract’s requirements

Chapter 6: Agile and the Federal Contracting
Process

Page 118 GAO-24-105506 Agile Assessment Guide

than detailing specific detailed requirements. The statement of work lays
out a detailed presentation of the technical requirements so that
contractors can provide an offer based on their unique technical solution
to a well-defined need. However, having this level of detail early in the
program’s life is typically not the case with Agile development because
the underlying detailed requirements are unknown and not well-defined at
the beginning of the acquisition process. Therefore, instead of
establishing a detailed presentation of the technical requirements in a
statement of work, a performance work statement or statement of
objectives could be used. For performance-based acquisitions, a
performance work statement is used to describe the required results in
clear, specific, and objective terms with measurable outcomes.
Alternatively, the goal of a statement of objectives is to develop a broadly
defined statement of high-level performance objectives to provide offerors
with maximum flexibility. The statement of objectives can be used alone
or with any performance-based contract and can include goals and
desired outcomes of the development effort, expected performance
standards, and “build iterations” for software development.

The statement of objectives should include a purpose, scope, period of
performance, location for conducting the work, background, performance
standards (e.g., the required results), and any identified operating
constraints. Performance standards establish the expected
accomplishment level required by the government to meet the contract
requirements. If performance standards are not measurable and
structured to enable performance assessments, the government may not
be able to assess the expected accomplishments.

The statement of objectives focuses on measuring outcomes, rather than
on specific tasks that the contractor is to perform. Table 8 highlights the
differences between a statement of work, performance work statement,
and statement of objectives.

Chapter 6: Agile and the Federal Contracting
Process

Page 119 GAO-24-105506 Agile Assessment Guide

Table 8: Differences between Statement of Work, Performance Work Statement, and Statement of Objectives

Contract factor Statement of work (SOW)
Performance work statement
(PWS) Statement of objectives (SOO)

Organization
understanding

The government has a high level of
confidence in the end state and
provides more “hands on” oversight
to ensure that tasks are performed
as specified. The SOW is part of
the contract.

The government describes the
required results in clear, specific,
and objective terms with
measurable outcomes. The PWS is
part of the contract.

The organization understands the
requirements and objectives but
expects the end state to evolve.
Additionally, the government
provides sufficient resources to
ensure the work identified can be
completed. The SOO does not
become part of the contract.

Change Change is expected to be minimal;
if encountered, changes to the
statement of work can be
disruptive.

Change is expected as the offeror
innovates.

Change may be a significant factor
in achieving the end state.

Constraint Constrains offerors to the specific
tasks identified, so it must be
unambiguous and comprehensive.
The government needs to apply
specific constraints on the life cycle
cost, performance, interoperability,
logistics/training, etc. Additionally,
the government will hold the
contractor accountable for delivery
of all tasks described in the
statement of work.

This approach provides the offerors
with the requirements and
objectives of the solicitation, but
allows the contractor to define
performance requirements to
improve their processes.

This approach provides the offerors
flexibility in developing their
proposals. It is typically not used
unless a high-level vision or road
map of the work required has been
established by the government.

Source: GAO analysis of Software Engineering Institute and Defense Acquisition University literature. | GAO-24-105506

While a statement of objectives provides the additional flexibility
necessary for Agile programs, a statement of work can also be used. The
following figure shows this relationship:

Chapter 6: Agile and the Federal Contracting
Process

Page 120 GAO-24-105506 Agile Assessment Guide

Figure 10: Comparison of SOO, PWS, and SOW Flexibility

The government can provide one or more document, but these
documents should include the product vision, strategic themes, an initial
road map, and an initial backlog of features and capabilities, or the
government can request that the contractor prepare their own work
statement to be included in their proposal. If the government requests that
the contractor include within their proposal some form of work statement
that is based on their proposed solution, the contractor may also include
an Agile development management plan, and a quality assurance plan,
along with other data required by the solicitation, for a thorough
evaluation of the proposal. Focusing on these items in the statement of
work or statement of objectives helps organizations describe their needs
in terms of what is to be achieved rather than how it is to be performed,
thus providing the developers more flexibility in their processes.

The FAR and agency supplements provide a wide selection of contract
types and structures to give the needed flexibility to organizations to
acquire a wide variety of supplies and services. However, to ensure that
the contractor does not perform inherently governmental functions, the
organization should carefully delineate the responsibilities of the

Contract structure and type

Chapter 6: Agile and the Federal Contracting
Process

Page 121 GAO-24-105506 Agile Assessment Guide

contractor in the solicitation. It may identify the types of decisions
expected to be made and ensure that federal employees oversee and
make the final decisions regarding the disposition of the requirements.
These actions should guarantee that the contractor’s work is evaluated by
the government and does not restrict the discretionary authority, decision-
making responsibility, or accountability of government officials.

Choosing the appropriate contract type and structure depends on many
factors, such as the complexity of the requirements and risk associated
with the work. Typically, any type of contract can be used for Agile
development; however, a critical consideration as part of this decision is
driven by whether the contract is for end items (e.g., products such as the
number of features completed) or services (e.g., the work performed by a
specified quantity of developers). For example, the program office and the
contracting officer must decide whether they will purchase goods or
services as contracting decisions, such as contract type, contract vehicle,
and what data to request as part of their contract oversight mechanisms
will flow from this decision.

The following illustrates how different agencies have used different
contract types and vehicles for Agile programs.

Agile in Action 3: Contracting for an Agile program
General Services Administration (18F) U.S. Air Force

The 18F office was established in March
2014 as an office within the U.S. General
Services Administration (GSA) that
collaborates with other agencies to fix
technical problems, build products, and
improve how government serves the
public through technology. In November
2018, we met with 18F officials to
discuss their experience with contracting
for Agile programs.

According to officials, not long after its
inception, 18F noticed an increased
demand from partner agencies for help
to support efforts to build new digital
services. In early 2015, 18F created and
tested an Agile blanket purchase
agreement (Agile BPA), under GSA
Federal Supply Schedule 70, Information
Technology. This Agile BPA was

In March 2019, we met with Air Force
officials to discuss how they have
developed contracts for Agile programs.
Air Force officials said that they have
chartered an acquisition agency that
helps establish and manage Agile
programs for components within the
Department of Defense that have a
similar software need. Working with
these components through a
memorandum of understanding, the Air
Force is able to act as a hub to optimize
different platforms for multi-domain
operations. The Air Force initiates small,
short-term contracts (e.g. ~3 months) for
a low cost through a broad agency
announcement, which helps them scout
capabilities through many contractors at
once. They also establish mid-term
contracts (e.g. <3 years in duration)

Chapter 6: Agile and the Federal Contracting
Process

Page 122 GAO-24-105506 Agile Assessment Guide

Source: GAO. I GAO-24-105506

intended to allow organizations to select
developers from a pool of vendors that
use Agile methodologies and customer-
centered design principles. Once the
Agile BPA was established, it provided
GSA with the flexibility to quickly award
flexible contracts through a streamlined
ordering process. As part of competing
the Agile BPA, GSA wanted prospective
vendors to demonstrate their ability to
use Agile practices. GSA asked vendors
to publicly demonstrate their
commitment to customer-centered
design and iterative development by
building open source prototype software.
In order to help other organizations
streamline their own Agile BPAs, 18F
has provided examples of solicitation
documentation on GitHub. 18F found
that by using an Agile BPA they did not
need the vendors to state that they could
operate in an Agile manner each
competition but could instead focus on
the specific details for that contract and
avoid duplicative administrative
acquisition work.

The Agile BPA, a simplified method of
filling anticipated repetitive needs for
goods or services by establishing
“charge accounts” with qualified
contractors, was an experiment in
modular contracting. Based on lessons
learned from the BPA, 18F warned
against using open source prototype
software and organizations pre-
establishing vendor pools with large
durations without the ability to onboard
or off-board vendors. Without this
capability, a permanently fixed vendor
pool could yield stagnated competition
with vendors only competing for larger
buys.

when promising programs progress into
a longer-term development. Lastly, as an
operational capability completes
development, the necessary contracts
are put in place to ensure a smooth
transition without a loss in productivity. In
addition, officials said that the Air Force
typically uses an indefinite
delivery/indefinite quantity contract to
procure Agile development teams to fill
specific software needs for specific
mission areas.

Through these three different categories
of contracts, officials said they identified
common factors that facilitate a
successful Agile program. For example,
the contract should have a scope broad
enough to provide leeway for decisions.
This flexibility allows for continuous
evaluation of capability delivery
throughout the contract’s life cycle. The
Air Force also found that it is important to
document relationships and
responsibilities among the interested
parties and have an active and engaged
product owner. Officials said that having
defined roles helps to manage
expectations of stakeholders and
empowers the product owner.

Both of these examples show that keys to successful contracting include ensuring that
the contract is structured so that it reflects the program and can react to updates in the
program without overly burdensome paperwork. A contract should also reflect learning
from previous contracts to further improve the contracting process.

Chapter 6: Agile and the Federal Contracting
Process

Page 123 GAO-24-105506 Agile Assessment Guide

Generally, the decision regarding which contract type to select should be
based on which one will allow the most efficiency in delivering a product.
That is, the contract type should enable the program to continuously
deliver working software. However, if the contract does not provide
sufficient structure to achieve the desired mission outcomes, while
offering flexibility for adoption of software requirements within the agreed-
on scope of the system, it may not be able to support an Agile
development approach. A lack of balance between structure and flexibility
increases the likelihood of disruption and delays.

In addition to decisions related to contract structure and type,
organizations may use an authority to operate (ATO) to manage security
and operational concerns. The decision to authorize a system to operate
is based on a review of the risk from the operation and use of the system.
The following illustrates how GAO has used this authorization process.

Agile in Action 4: Authority to operate

Government agencies provide authority to operate (ATO) to IT systems using a
process-heavy methodology that provides opportunities to agencies to partner with
internal security personnel to reinforce Agile practices. GAO grants ATO to cloud and
on-premise IT systems following a six-step process based on the National Institute of
Standards and Technology (NIST) and Federal Information Processing Standard
(FIPS) guidance. GAO balanced the development of working software with a need
for comprehensive documentation by iteratively and incrementally developing the ATO
documentation package, which has allowed the agency to respond rapidly to changes
and avoid rework. GAO’s ATO process follows a standard, six-step process to assess
the security and compliance of IT systems. Generally, this process takes between 30
and 90 days to complete, depending on the system’s complexity and urgency, the
availability of staff, and the extent to which the system deployment team maintained
effective supporting documentation.

While GAO did not originally employ Agile practices during the ATO process, over time
teams partnered with security personnel to identify ways to minimize the complexity of
the process while facilitating Agile teams to continue employing these practices when
supporting the ATO process. According to GAO Information Systems and Technology
Services (ISTS) officials, this has significantly improved the timeliness, effectiveness,
and simplicity of the ATO process among teams that employ Agile practices. For
example, system deployment teams often schedule weekly stand up meetings with
security personnel early in the project’s life cycle and proactively develop
documentation supporting the ATO process, allowing them to provide timely,
appropriate inputs to the support the process and respond effectively to requirements
from the security team. In addition, according to ISTS, the frequency of communication
results in the development of a predictable documentation structure, allowing security
personnel to seek out information as needed without requiring significant guidance from
the deployment team. As a result of this integrated, team-based approach, security

Chapter 6: Agile and the Federal Contracting
Process

Page 124 GAO-24-105506 Agile Assessment Guide

personnel are often able to provide ATO a few days after an application reached the
maturity level needed for production use.

In addition, according to ISTS, GAO has implemented a control environment that
appropriately accounts for the pace of innovation, and corresponding high frequency of
ATOs, that results from employing Agile practices. Specifically, GAO has adapted a set
of environment-wide control practices and a common set of audit tools to assess
compliance with security guidelines. These controls are inherited by applications
deployed within the control environment, reducing the administrative burden on security
personnel when completing each individual ATO package.

Source: GAO. I GAO-24-105506

Typically, an IT contract is structured with contract data requirements
(sometimes referred to as a contract data requirements list) and relies
heavily on documentation and major reviews at predetermined
milestones. However, the primary deliverable for an Agile program is
working code released to the customer that adds value to the program.
Therefore, programs that adopt Agile methods should tailor the contract
data requirements list to align with Agile metrics to reflect the different
processes and artifacts used in Agile development.

Contract data requirements list and source code

Obtaining data rights for developed software can be useful if the government
changes contractors. Since the government works closely with the development
contractor in Agile, it is important to tailor the contract to protect the government’s
interests. Negotiating and obtaining data rights through a technical data package or
other means can prevent the government from getting tied to one contractor.

Source: GAO. I GAO-24-105506

There are many points throughout the Agile development life cycle that
offer the opportunity to collect data about the quality of the software
products. The quantity and type of contract data requirements established

Incorporate Agile
metrics, tools, and
lessons learned from
retrospectives during
the contract
management process
Contract data requirements
rely on Agile metrics

Chapter 6: Agile and the Federal Contracting
Process

Page 125 GAO-24-105506 Agile Assessment Guide

in the contract should account for the program environment. Due to the
anticipated close and continuous work coordination between the
government and contractors, the number of formal deliveries under a
contract data requirements list or other delivery process may be less than
what is collected for a traditional IT acquisition. To that end, the contract
data requirements list or other delivery process should be tailored in the
contract. If the contract data requirements list or other delivery process
does not consider the Agile development program environment, the
program may miss the opportunity to collect data about the quality of its
software products.

Programs should also collect actual data associated with the program’s
releases, features, and capabilities to enable contract oversight and hold
contractors accountable for producing quality deliverables. Agile metrics
primarily focus on the developers during an iteration. Programs use work
elements (e.g., story points, staff hours, task lists, etc.) and burn down
charts to track progress and measure productivity, costs, schedule, and
performance. As previously discussed in chapter 5, the definition of
“done” in the user story should identify all requirements that must be
demonstrated before a new release is implemented.

A program office and contractor can track several different Agile metrics
for requirements, cost, schedule, performance, architecture, size,
complexity, test, and risk in order to ensure that the organization is
adequately monitoring the contracted development effort. If the program
does not collect Agile metrics for technical management, program
management, and Agile methods, the government may not have the right
information for effective contract oversight and will not be able to hold the
contractors accountable for producing high quality deliverables. Table 9
provides an overview of these three metric categories that can be used
throughout the Agile development life cycle to help enable effective
contract management and oversight. Additional information regarding
best practices to establish program-specific metrics is included in chapter
8.

Data from Agile artifacts
enables contract oversight

Chapter 6: Agile and the Federal Contracting
Process

Page 126 GAO-24-105506 Agile Assessment Guide

Table 9: Examples of Agile Metrics by Metric Category

Metric category Descriptiona
Technical management Includes metrics that measure the quality of the product delivered. For example,

technical debt provides valuable information regarding the accumulation of
deficiencies over time. Observing technical debt provides insight into the code
quality, ensuring that code quality meets expectations and does not result in an
excess of technical debt. This can also avoid the need for a complete program
refresh if the code base no longer functions properly.

Program management Includes metrics that monitor and report on the cost, schedule, and performance of
an Agile program. For example, lead time provides information about how long it
takes to move a feature from identification to release to management.b This allows
managers to observe how rapidly developers are able to meet customers’ needs.

Agile methods Includes metrics that measure how well the program leverages Agile methods. This
can be observed at an organization level through policies in place to support Agile,
at a program level through training staff, and at a team level by implementing
repeatable practices and forming Agile teams that have direct contact to customers
through a product owner. Metrics in this category can include how much customers
use a new feature or how often working code is delivered and demonstrated.

Source: GAO. | GAO-24-105506
aThe Agile metrics listed for each metric category are not an exhaustive list of all available Agile
metrics.
bLead time is the time elapsed between the identification of a requirement and its fulfillment.

Documentation for these metrics can be found in the backlog, design
documents, test scripts, or other sources and is typically updated
regularly when using Agile methods. For additional information about
these metrics and reports, see chapter 8.

Beware of self-reporting

The process of choosing which metrics to use for contract oversight should include
thoughtful consideration of what information most clearly shows how the contractor’s
work adds value to the program. Some metrics can be collected via self-reporting.
For example, velocity is a measure of the rate at which the team delivers a user
story. It is not comparable from team to team and should not be used to distinguish
one team from another. It is very easy to show an increase in velocity without adding
value to the program by inflating story point estimates. In other words, increasing
velocity does not always indicate a change in productivity.

Source: GAO. I GAO-24-105506

In addition to including metrics in a contract for an Agile program, the
organization should require reviews with stakeholders to interact with the
developers and product owner to better understand the goals for the end
product. The interaction can provide valuable insight to help inform

Conduct retrospectives to
continually improve based on
lessons learned

Chapter 6: Agile and the Federal Contracting
Process

Page 127 GAO-24-105506 Agile Assessment Guide

contract oversight. The following are sample questions that can be asked
at a retrospective with developers and what their answers might imply.

1. When was the last time a program delivered working software to the
customer?
Implication: The longer the time frame from when the customer need
is identified to the delivery of working software, the greater the risks to
the program.

2. Does the program build a minimum viable product?
Implication: A minimum viable product solves the core customer
needs as soon as possible and helps to validate needs, reduce risk,
and help the program course correct quickly, if necessary.

3. What impediments currently facing the program can the sponsor help
remove?
Implication: Agile values leadership through empowerment rather
than power; that is, those who enable success by the ability to use
their position to make others’ jobs easier and more efficient.

4. Does the program have lessons learned to share with the
organization?
Implication: Sharing this information with sponsors and throughout
the organization will help organizations identify efficiencies across
programs.

5. Do you need better clarity regarding feature prioritization?
Implication: Goals and priorities are critical in Agile planning and
work better if aligned with organizational strategic goals.

6. What is your biggest bottleneck?
Implication: A key Agile principle is to promote sustainable
development. Normalizing the workload at a system level helps
developers to meet schedules and find additional organizational
efficiencies.

7. How has the program improved since its last review?
Implication: Improvement shows that the team is reflecting on how to
become more effective and adjusts behavior accordingly. In Agile, it is
important that teams review processes so that they can improve.

8. Is the customer satisfied with the results?

Chapter 6: Agile and the Federal Contracting
Process

Page 128 GAO-24-105506 Agile Assessment Guide

Implication: Working software is the primary measure of progress
and customer satisfaction is an indicator that the program is
prioritizing early and continuous delivery of valuable software.

9. Are iterations finished as planned or are unfinished requirements
pushed to the back of the backlog for future iterations?
Implication: Moving unfinished work to the end of the backlog should
not be done without input from the product owner as the backlog
should be maintained so that the program can ensure it is always
working on the highest priority requirements to deliver the most value
to customers.

Contract oversight reviews should align with the program’s Agile methods
and cadence. For example, in a Waterfall model, technical reviews are
used as control gates to move from one sequential phase to the next.
These formal reviews provide traditional programs the opportunity to
discover risks so they can be mitigated before moving on to the next
phase of development. However, with Agile development, the focus is on
completing each work unit quickly in order to provide a releasable product
in a short period of time. As a result, Agile programs tend to use technical
reviews as an opportunity to share information face-to-face and to build
team confidence. A byproduct of this approach is that problems are
discovered early, often before they become too big to control.

As a result of these key differences between Waterfall and Agile program
structures, the same program review gates may need to be tailored as
part of the contract in order to successfully align the contract
requirements with the functional requirements. For example, the
traditional requirements development, preliminary design review, and
critical design review events may be replaced by incremental design
reviews, and, if needed, system-level reviews. The incremental reviews
should be tied to the program’s Agile cadence for completing releases
and will likely occur more often than traditional reviews. As each release
commences, developers will continuously pull and refine features for
development from the backlog that is being constantly prioritized based
on the program’s road map. These recurring efforts provide program
managers the oversight they need to help ensure that the right features
are being developed. Following this approach, reviews may occur
incrementally, following the program’s cadence, throughout the life of the
contract. Figure 11 shows a comparison of Waterfall development
reviews and how an Agile program’s reviews would align with the
program’s Agile cadence.

Contract oversight reviews
align with the program’s Agile
cadence

Chapter 6: Agile and the Federal Contracting
Process

Page 129 GAO-24-105506 Agile Assessment Guide

Figure 11: Comparison of Waterfall and Agile Programs’ Review Cycles

Chapter 6: Agile and the Federal Contracting
Process

Page 130 GAO-24-105506 Agile Assessment Guide

Generally, if reviews for the program are not tailored to align with the
program’s Agile cadence, the review structure could impede progress and
cause delays.

Proper training in Agile implementation for all personnel is a key element
for success. Without properly trained program office personnel, including
contracting personnel, staff will not be capable of assisting the program in
making business decisions and trade-offs that come with the
implementation of an Agile effort.85 Agile practices stress the need for
government program management personnel to be highly involved with
the program and available daily to provide input for the developers. This
may involve both a culture shift and training in new roles and
responsibilities for these program management personnel. To accomplish
this, program office personnel should work with developers to establish a
common understanding of Agile techniques so that an acquisition strategy
can be properly drafted to establish a development cadence. This
common understanding often depends on effective training and
collaboration between developers and the acquisition team.

In turn, the small, empowered teams need to have a close partnership
with the program managers, customers (through the product owner), and
contractors (often the developers). The government contracting
community serves as an invaluable linchpin to enable this relationship in
a collaborative, flexible business environment. Dedicated contracting
personnel, properly trained in Agile implementation, can assess any
impact Agile cadences may have on the program’s acquisition strategy,
enabling a close partnership with the developers.86 To help facilitate this
partnership, access to remote collaboration tools for teams is needed.
Distributed teams have become normal; however, remote collaboration
can be difficult for teams if they are not provided access to the necessary

85The Federal Acquisition Certification in Contracting Core-Plus Specialization in Digital
Services (FAC-C-DS)—part of the Digital IT Acquisition Professional (DITAP) training and
development program—provides access to training courses and other resources about
Agile software development to federal acquisition professionals.

86The extent to which on-site contracting staff are dedicated to the Agile team is a
decision for the program office to make and depends on many factors, such as the
complexity, duration, and size of the acquisition. Another consideration is the availability of
adequately trained staff. In order to maximize effectiveness, the program’s acquisition
personnel should have a thorough understanding of the program’s Agile methods.

Integrate the program
office and the developers

Train program office,
acquisition, and contracting
personnel

Chapter 6: Agile and the Federal Contracting
Process

Page 131 GAO-24-105506 Agile Assessment Guide

collaboration tools. Without a set of commonly available collaboration
tools, especially for video conferencing, it is much more difficult for
agency teams and contractors to practice Agile, where frequent
communication and feedback are needed to facilitate quick decisions and
prioritization of tasks.

Management can create an environment that empowers and motivates
the team. An empowered team has the authority and responsibility to
make decisions rather than depending on a manager. Management can
accomplish this by adopting the role of a mentor to foster an environment
of trust and communicate a positive perception of Agile. If management
does not foster an environment of trust, the product owner may not feel
empowered to make decisions.

There are various roles and offices involved in the planning, managing,
and executing an Agile contract. Figure 12 depicts these roles.

Identify clear roles

Chapter 6: Agile and the Federal Contracting
Process

Page 132 GAO-24-105506 Agile Assessment Guide

Figure 12: Roles When Planning, Managing, and Executing an Agile Contract

The product owner is accountable for ensuring business value is
delivered by creating customer-centric items (typically user stories),
ordering them, and maintaining them in a backlog. See appendix II: Key
Terms for more information about the definition of a product owner.

Chapter 6: Agile and the Federal Contracting
Process

Page 133 GAO-24-105506 Agile Assessment Guide

The contracting officer’s representative (COR) which could include a
contracting officer’s technical representative (COTR), is a technical expert
designated by the contracting officer to perform specific technical and
administrative functions. The COR may provide day-to-day oversight of
the contractor and reviews deliverables to ensure that they meet
government requirements for quality, completeness, and timeliness.

As discussed in Chapter 3, the development team may consist of the
software developers, designers, a team facilitator, and subject matter
experts who code the features for the program.

The program office refers to all other personnel who support the
program. This can include legal support, program monitoring and control
support, and program management support. It is important that all
personnel who support the program are familiar with Agile processes.

Contracting personnel typically include a warranted contract officer,
who has express authority to enter into and administer a contract on
behalf of the government, and a contract specialist who can act as a
business advisor to program managers. Contracting personnel typically
assist in planning the acquisition of goods and services, help negotiate
the terms of the contract, and provide contract management and
administration services.

These roles must be clearly defined and responsibilities should be
faithfully carried out in order to help prevent bottlenecks and ensure that
rapid feedback channels are clearly established from the start of
development. One area of potential confusion can be between the role of
the contracting officer, contracting officer’s representative (COR), and the
product owner. For example, in Agile, the product owner is responsible for
approving the work delivered by the team, while the COR is responsible
for ensuring the work is technically sufficient so that it can be accepted by
the government and the contracting officer is responsible for contract
development, oversight, and administration. This confusion could be due,
in part, to the product owner role not being a typical role that is used in
Waterfall development. While there are similarities between these roles,
each role has distinct responsibilities.

Chapter 6: Agile and the Federal Contracting
Process

Page 134 GAO-24-105506 Agile Assessment Guide

Case study 17: Federal guidance revised to reflect the role of
contracting personnel in software development, from Social
Security Contracting, GAO-20-627

In July 2020, GAO reported on its review of the Social Security Administration’s (SSA)
implementation of its contracting and acquisition processes. SSA is responsible for
delivering services that touch the lives of virtually every American. To do so, SSA relies
on a variety of supplies and services and Agile–trained contracting personnel to enable
software development. GAO assessed how SSA awarded and oversaw contracts for
supplies and services. GAO also assessed the extent to which SSA updated its
acquisition guidance to address the role of this contracted support.

GAO found that the approach followed by SSA when it awarded and oversaw contracts
generally aligned with the requirements GAO reviewed. Specifically, for the 27
contracts and orders GAO reviewed, GAO found that SSA’s approach varied based on
factors such as contract type and dollar value. SSA’s acquisition planning for high dollar
value acquisitions included documentation of specific risks and SSA varied its market
research approach based on the estimated dollar value of the acquisition.

GAO also found that SSA adopted an Agile approach to software development for
some of its critical IT programs in 2015. Subsequently, SSA developed an IT
modernization plan in 2017 that stated SSA will use an Agile methodology. However,
GAO found SSA’s acquisition handbook and Agile guidance did not address the role of
contracting officials, which GAO has identified as a best practice. Although the
handbook contained information on the roles of contracting personnel, it did not specify
that each acquisition using Agile processes should identify the role of contracting
personnel. GAO reported that identifying a role for contracting personnel in the Agile
process should better position SSA to achieve its IT modernization goals and provide
appropriate levels of oversight.

In March 2021, SSA updated relevant guidance to include the roles and responsibilities
of contracting officials in the Agile software development lifecycle.

GAO, Social Security Contracting: Relevant Guidance Should be Revised to Reflect the
Role of Contracting Personnel in Software Development, GAO-20-627 (Washington,
D.C.: July 31, 2020).

Source: GAO. I GAO-24-105506

The product owner is typically associated and familiar with the business
aspects of the program office, while the COR has more technical skills.
However, it is important that the product owner and the COR both
understand the program and teams’ Agile methods, and that there is one
government focal point to interact with the team. In other words, the
product owner serves as a bridge between the COR (who generally
judges the technical quality of the contractor’s work for acceptance on
behalf of the government) and the contractor, while also working to
integrate the program office and developers to ensure that the customer
receives the expected business value for the work. As long as the product

https://www.gao.gov/products/GAO-20-627
https://www.gao.gov/products/GAO-20-627

Chapter 6: Agile and the Federal Contracting
Process

Page 135 GAO-24-105506 Agile Assessment Guide

owner and the COR remain in close communication, they can continue as
separate roles. Additionally, the product owner and COR work closely to
align the program’s business and technical requirements. Both the COR
and product owner must be government employees so that they can be
empowered to make day-to-day decisions for the development effort. If
the product owner was not required to be a government employee, they
would not be empowered to make day-to-day decisions for the
development effort, thus causing development delays.

As stated earlier, dedicated contracting personnel should work closely
with the developers and the product owner. The product owner should
represent a government commitment to providing an empowered
customer, a representative who can make decisions quickly and prioritize
requirements within the scope of the program’s road map. Together, the
contracting officer, product owner, and government members of the
development team (e.g., the developers, subject matter experts, and
team facilitator) should consider the following questions as the acquisition
strategy is developed:

1. Have the program’s vision and goals been established?
2. Have the program’s requirements been established and are the cost

and schedule constraints identified?
3. Are Agile methods well defined or already in place within the

government program office?
4. Does the program office have executive-level support for Agile

development?
5. Did market research identify qualified contractors with Agile

experience?
6. Are there multiple contractors who will conduct parallel development?
7. Who is the systems integrator (e.g., government or contractor) and

what level of integration is required?
8. What is the overall development timeline?
9. What is the release schedule?
10. How much contracting support is available for the program?
11. Are government resources available to actively manage contractor

support once the contract has been awarded? For example, is there a
dedicated product owner?

Chapter 6: Agile and the Federal Contracting
Process

Page 136 GAO-24-105506 Agile Assessment Guide

12. Is the program considered high risk and what level of risk is the
government willing to accept in its contracting strategy?

13. Are other, similar programs currently using or thinking of using Agile
for development?

14. Can the program leverage previously established contract vehicles in
order to shorten acquisition times?

15. What are the program’s requirements and key deliverables?
16. What are the milestones and how frequently do they occur?
17. What performance metrics are defined in the contract?

Furthermore, contracting personnel and other program office personnel
should understand the distinction between contract and functional
requirements that are part of the Agile development process. In many
cases, these two types of requirements differ significantly. If the
contracting personnel and the program office do not understand the
distinction between contract and functional requirements, then all
compliance and security requirements may not be included. For example,
in an Agile environment, program requirements are broken down into
high-level capabilities that, over time, are further decomposed into
features, while Waterfall development defines requirements (e.g.,
functional requirements) in detail in the statement of work and system
segment specifications. If these are not clear, compliance and security
requirements may not be included in the program.

Contracting personnel must account for change during a contract’s period
of performance. If additional requirements are identified by the customers
after a contract has been awarded, but are still within the scope of the
contract, contracting personnel (along with other members of the Agile
team) should ensure that there is enough time on the contract to
complete the additional work or whether these requirements can
substitute for currently identified features. This is done by examining the
work identified in the contract or sequence of operations to ensure that
additional work is within the scope of the contract, and by prioritizing the
work in the backlog. If new or additional work is identified and found to be
a higher priority to accomplish goals and is outside the scope of the
current contract, then the contracting officer may issue an out-of-scope

Awareness of the contract’s
scope

Chapter 6: Agile and the Federal Contracting
Process

Page 137 GAO-24-105506 Agile Assessment Guide

modification to add work to the contract.87 Out of scope contract
modifications should be infrequent if the program’s vision and high-level
capabilities are broad enough so that features resulting from breaking
down requirements can be added to the backlog within the contract’s
current scope.88

While a contract cannot be modified without an executed modification, the
product owner should be empowered to prioritize the detailed
requirements and thereby help to avoid scope creep. The engaged and
empowered product owner considers the requirements consistent with the
program vision, participates in incremental planning, iteration and release
planning, and retrospectives in order to minimize contractual changes as
the Agile program evolves. Lack of involvement by the product owner and
limited empowerment can result in bottlenecks in the contracting process.

Successful delivery of a software program requires planning,
management, information gathering, and continual assessment of
performance under the contract by both program office personnel and
developers. All levels are involved in the acquisition and contracting
processes and must understand the Agile process to achieve a
successful outcome. For example, the product owner should be engaged
in the solicitation development process to help clarify the customers’
needs from the very start of the development of the solicitation. Likewise,
contracting personnel should understand the program’s Agile methods to
develop a contract structure that aligns and supports those specific
processes.

87If a contract modification contains work and terms that are out of scope of the awarded
contract, this is considered a non-competitive contract action under the FAR and there are
additional justifications and approvals that are required before the modification can be
executed. The FAR in part 6 and similar sections in parts 8, 13, and 16 describes the
documentation required for out-of-scope contract modifications. If the work is outside of
the scope of the project, the acquisition strategy may need to be modified as well. FAR
34.004.

88Contract modifications raise numerous legal considerations. For instance, depending on
the scope and circumstances of the modification, an agency may not be able to use the
original appropriation, used to fund the contract at award, to fund the contract
modification. If the work is outside of the scope of the acquisition strategy additional
concerns are raised. Prior to substituting any work that is outside the scope of the
contract, the product owner and COR must consult with the contracting officer, contracting
specialist, and other government program office personnel, as appropriate.

Chapter 6: Agile and the Federal Contracting
Process

Page 138 GAO-24-105506 Agile Assessment Guide

1. Tailor acquisition plans and contract to align with Agile practices
• Encourage the use of modular contracting.
• Enable flexibility for adapting software requirements.
• Decide whether the contract is for goods or services.

2. Incorporate Agile metrics, tools, and lessons learned from
retrospectives during the contract management process
• Ensure that contract data requirements rely extensively on Agile

metrics.
• Data from the program’s Agile artifacts enables contract oversight.
• Conduct retrospectives to allow stakeholders to interact with

developers and product owners to continually improve Agile
methods based on lessons learned.

3. Integrate the program office and the developers
• Train program office acquisition and contracting personnel.
• Identify clear roles for contract oversight and management.
• Ensure that all personnel are familiar with the contract’s scope.

Best Practices
Checklist: Contracting
for an Agile Program

Agile and Program Monitoring
and Control

Chapter 7

Chapter 7: Agile and Program Monitoring and
Control

Page 140 GAO-24-105506 Agile Assessment Guide

Program monitoring and control provide the oversight needed for
legislators, organization officials, and the public to assess whether
government programs are achieving their goals. The government uses
many traditional practices intended for Waterfall development which may
need to be adapted for application to an Agile program. For example, as
discussed in chapter 4, traditional methods of tracking and reviewing the
status of a program focus on the big picture, whereas Agile methods are
focused on short-term efforts with the most attention and detailed
planning paid to the current iteration. Despite this apparent conflict,
program monitoring and control can be adapted to an Agile program. This
chapter discusses how to adapt a work breakdown structure (WBS) for an
Agile program and how cost estimating, scheduling, and earned value
management (EVM) are applicable to Agile programs.

The WBS is the framework used by federal agencies to organize the work
into manageable, smaller components. It is an essential input to three
principal program controls used by federal agencies: cost estimating,
scheduling, and EVM.89 Using the WBS, a program’s cost estimate and
schedule are developed and can be combined into one baseline to
measure program performance. A major benefit that performance
management tracking provides is the identification of cost and schedule
variances from the overall baseline plan so that program risks can be
quickly discerned, tracked, and managed. GAO has issued best practice
guides for cost, schedule, and EVM.90

A WBS can be used by management and Agile teams to provide a clear
picture of the total scope of work necessary to meet a program’s vision

89A WBS breaks down product-oriented elements into a hierarchical parent/child structure
that shows how elements relate to one another as well as to the overall end product. A
WBS provides a basic framework for a variety of related activities including estimating
costs, developing schedules, identifying resources, and determining where risks may
occur. It also provides a framework to develop a schedule and cost plan that can easily
track technical accomplishments—in terms of resources spent in relation to the plan, as
well as completion of activities—enabling quick identification of cost and schedule
variances.

90GAO, Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G, (Washington, D.C.: Mar 12, 2020) and
Schedule Assessment Guide: Best Practices for Project Schedules, GAO-16-89G
(Washington, D.C.: Dec. 22, 2015).

Chapter 7: Agile and Program Monitoring
and Control

Work breakdown
structure in an Agile
environment

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Chapter 7: Agile and Program Monitoring and
Control

Page 141 GAO-24-105506 Agile Assessment Guide

and requirements.91 A WBS can also help show the relationship between
the Agile development effort and other parts of the program, such as
program management or software licenses. A well-structured WBS
decomposes the effort into discrete components that can be measured
and tracked, thus providing a framework for planning and accountability
by identifying work products that are outcome focused.

With the end product in mind, the WBS creates a hierarchical structure
that shows how program elements relate to one another and the overall
program. Similarly, Agile create a hierarchical structure that represents
the characteristics and higher-level program goals of the final product.
Each program will define its Agile hierarchy. A typical Agile hierarchy
contains epics, features, and user stories, which decompose the product
into workable pieces. Each of these Agile levels depicts what the work
entails and how it relates to higher-level program goals and the final
product. As with any WBS, more detail can be added as additional
information is discovered about the program. The WBS should ultimately
be based on existing Agile artifacts (e.g., the road map) to reinforce
traceability between program monitoring and controls and Agile planning
documents. The levels of effort are described here.

Epic: The epic captures high-level capabilities. It generally takes more
than one or two iterations to develop and test. An epic is usually broad in
scope, short on details, and will commonly need to be split into multiple,
smaller user stories before any work begins. Epics will be decomposed
according to the Agile hierarchy into features and user stories.

Feature: A feature is a specific amount of work that can be developed
within one or two reporting periods. It can be further segmented into user
stories. The functionality is described with enough detail that it can remain
stable throughout its development and integration into working software. It
is this level that should be tracked through program management
products like the life cycle cost estimate and schedule. The features in the
WBS should be fully traceable to the program’s road map.

User story: The user story is the smallest level of detail in an Agile
program and is subject to change based on customer feedback. For this

91A separate WBS document is not the only solution. Chapter 5 discusses how the
concept of backlog refinement is used to decompose requirements as more information
becomes known. The chapter also describes a set of strategic requirements necessary to
justify a program that can be used to develop a WBS and some form of EVM
measurement to achieving these goals.

Chapter 7: Agile and Program Monitoring and
Control

Page 142 GAO-24-105506 Agile Assessment Guide

reason, a user story can be added to or deleted without altering the
overall scope of the features. A user story is weighted for complexity
using story points. It can be used as quantifiable backup data for EVM;
however, a user story should only be added to the WBS after release or
iteration planning and be traceable to the prioritized backlog.

Figure 13 shows a representative WBS for an Agile software
development program and how more detail can be added over time. The
WBS should be traceable to contract documents.

Figure 13: Work Breakdown Structure in an Agile Program

Figure 13 shows that, as more information is learned, additional detail can
be added to the WBS. For example, when features are decomposed
during iteration or release planning, those features can be added to the
appropriate parent level item in the WBS. Updating the WBS with
additional information and tying it to Agile documents as more information
is discovered helps provide additional traceability through Agile artifacts
and program control files. A WBS can also help show the relationship
between the Agile development effort and other parts of the program,
such as program management, hardware, or software licenses.

An Agile environment should have established methods and measures to
ensure progress is monitored objectively. Specifically, lower-level user
stories and tasks are flexible and subject to change throughout the
development process. Because of this instability, the majority of

Chapter 7: Agile and Program Monitoring and
Control

Page 143 GAO-24-105506 Agile Assessment Guide

traditional program monitoring and control best practices should be
maintained at a higher level of the WBS, namely at the epic or feature
level.

The program WBS provides a common structure for cost, schedule, and
EVM. In an outcome-based Agile environment, the WBS is hierarchical,
product-based, and contains the total program scope. Further, the WBS
should reflect high-level capabilities identified in the road map as well as
varying levels of detail at the epic and feature levels when this information
is available, typically only for near-term work. Figure 14 provides an
example of the relationship to the WBS and the road map. Each release
includes numerous features and epics corresponding to specific WBS
elements and the WBS is updated after each release as more information
is refined.

Chapter 7: Agile and Program Monitoring and
Control

Page 144 GAO-24-105506 Agile Assessment Guide

Figure 14: Work Breakdown Structure Relationship to Road Map

At any specific time, the WBS should inform the necessary technical
activities needed to sufficiently complete a feature. As program
requirements are decomposed to epics and features, the derivation of the
WBS should remain traceable to the program’s cost, schedule, and EVM
work, as appropriate. The program should also establish defined
completion acceptance criteria to ensure that performance measurement

Chapter 7: Agile and Program Monitoring and
Control

Page 145 GAO-24-105506 Agile Assessment Guide

is consistent and traceable. In this way, the relationship between a
program’s progress and its technical achievement can be maintained.

Relationship Between Program Progress
and Technical Achievement

An Agile program should have an understanding of the high-level expectations and
targets or guardrails for both schedule and cost from the project vision. It is therefore
critical that the team establish an initial (baseline) product road map as soon as
possible in order to determine how far apart the estimates are from their targets.
There are two effective methods for creating an initial product road map on large-
scale Agile projects: reference class forecasting and throughput-based forecasting.
Additional metrics and reporting tools discussed in this guide to evaluate Agile project
performance include burn down charts, velocity, sprint reviews, sprint retrospectives,
earned value management, and life cycle cost estimates, among others.

Source: GAO. I GAO-24-105506

The GAO Cost Estimating and Assessment Guide92 (Cost Guide)
establishes a consistent methodology based on best practices used by
federal agencies to develop, manage, and evaluate a cost estimate. The
Cost Guide recommends the use of a 12-step process that, when
followed, can result in a high quality, reliable cost estimate:

1. Define the estimate’s purpose.
2. Develop the estimating plan.
3. Define the program.
4. Determine the estimating structure.
5. Identify the ground rules and assumptions.
6. Obtain the data.
7. Develop the point estimate and compare it to an independent cost

estimate.
8. Conduct sensitivity testing.
9. Conduct a risk and uncertainty analysis.
10. Document the estimate.

92GAO, Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G, (Washington, D.C.: Mar 12, 2020).

Cost estimating best
practices in an Agile
environment

https://www.gao.gov/products/GAO-20-195G

Chapter 7: Agile and Program Monitoring and
Control

Page 146 GAO-24-105506 Agile Assessment Guide

11. Present the estimate to management for approval.
12. Update the estimate to reflect actual costs and changes.

These steps mostly occur in a sequential order; however, steps three
through seven are iterative and can be accomplished in varying order or
concurrently. While Agile methods differ from the Waterfall development
process, the need for a high-quality, reliable cost estimate is applicable.
Whatever development framework is used, every program needs to
establish a budget and be accountable for delivering a value-based
outcome. To that end, an Agile program should follow the GAO 12-step
cost estimating process to develop an estimate that reflects cost
estimating best practices. One advantage of Agile development is that
this approach follows an iterative process that results in new data that are
generated and collected after every iteration which can help keep the
estimate updated. Furthermore, while Agile lowers the technical risk
through incremental delivery, sensitivity, risk, and uncertainty analyses
should be performed to inform management decisions. Finally, while Agile
places the value of working software over comprehensive documentation,
documenting the cost estimate assumptions is still important.

Agile software development produces documentation, measures, and
artifacts that can be used to support a cost estimate. This documentation
includes the planning and assumptions made by the program office and
strengthens the cost estimation process. Table 10 compares GAO’s cost
estimating process to a typical Agile process.

Agile measures and
documenting the cost estimate

Chapter 7: Agile and Program Monitoring and
Control

Page 147 GAO-24-105506 Agile Assessment Guide

Table 10: 12-Step Cost Estimating Process and Agile Cadence Examples

12-Step estimating process step and definition Agile environment and the GAO cost estimating process
Step 1: Define the estimate’s purpose
The purpose of the cost estimate is determined by its intended
use.

During release or initial planning, determine how any cost
estimates will be used.

Step 2: Develop the estimating plan
The estimating plan documents the members of the estimating
team and the schedule for conducting the estimate.

During initial planning, identify the cost estimating team that will
develop the estimate and any technical experts that will be
needed to support the estimating effort. The estimate plan should
also include details about when the government program office
plans to update the estimate with Agile metrics.

Step 3: Define the program
Program personnel identify the technical and programmatic
parameters on which the team will base the estimate. This
information should be kept updated at all times so it remains
current.

These steps (steps 3-7) should first occur during initial program
planning with the development of a road map or vision and be
updated as the estimate is refined at established intervals, such
as after a release, in support of program milestone reviews, or
whenever there are updates to the road map. Agile performance
measures and artifacts such as burn up/burn down charts,
velocity metrics, and the product backlog can be used to update
the estimate accordingly.
It is important that the cost estimating team is integrated into
release planning so that team members can fully understand the
changes to the plan and update the estimate to reflect those
changes that occur naturally during the Agile process (e.g.
additional detail is provided through a requirements
decomposition process).
An independent cost estimate should be developed after the
initial cost estimate and at any other time during the program’s
life

Step 4: Determine the estimating structure
This step defines at various levels of detail what the program
needs to accomplish to meet its objectives. Typically, estimators
will have access to a work breakdown structure (WBS) that
decomposes the work into a product-oriented, hierarchical
framework supplemented by common elements such as program
management, systems engineering, and systems test and
evaluation, etc. A WBS promotes accountability by clearly
identifying work products and enables managers to track technical
accomplishments. It also outlines how program elements
progressively subdivide into more detail as new information
becomes available.
Step 5: Identify the ground rules and assumptions
The estimating team establishes ground rules that represent a
common set of agreed upon estimating standards such as what
base year the team will use to express costs, the number of
expected program quantities, and the anticipated contracting
strategy. When information is unknown, the estimating team must
fill the gaps by making assumptions so that the estimate can
proceed. Because many assumptions profoundly influence cost,
management should fully understand the conditions the estimate
was structured on. Well-supported assumptions include
documentation of their sources along with a discussion of any
weaknesses or risks.
Step 6: Obtain the data
The team collects, normalizes, documents, and archives the cost,
schedule, programmatic and technical data it will use for the cost
estimate.

Chapter 7: Agile and Program Monitoring and
Control

Page 148 GAO-24-105506 Agile Assessment Guide

Step 7: Develop the point estimate and compare it to an
independent cost estimate
The team creates a time-phased cost estimate for each WBS
element using a variety of techniques including analogy,
parametric, and engineering build-up. Once each WBS element
has been estimated using the best methodology from the data
collected, the estimating team adds all WBS costs together to
determine the program’s point estimate. This “point estimate”
represents the best cost estimate, given the underlying data and
represents one potential cost among a range of many possibilities.
To validate the estimate, the team reviews it for errors and
omissions and compares it to an independent cost estimate to
understand where and why there are any differences.
Step 8: Conduct sensitivity testing
The team examines the effect of changing one assumption or
variable at a time while holding all other estimate inputs constant in
order to understand which factors most affect the cost estimate so
that cost drivers are evident.

Sensitivity analysis should be performed after the initial point
estimate has been developed to determine the impact of changes
to cost drivers on the overall cost estimate.

Step 9: Conduct a risk and uncertainty analysis
Using a risk and uncertainty analysis, the team quantifies the
cumulative effect that uncertain data inputs, changing
assumptions, and variations underlying estimating equations have
on the estimate. Based on probabilities produced from the
analysis, the team determines a range of costs associated with the
point estimate so that management can decide how much
contingency funding it needs to mitigate potential risks.

Risk and uncertainty analysis should be conducted to better
understand the risk range around the cost estimate due to
variations in estimating assumptions such as sizing metrics,
velocity, number of iterations, and labor rates.

Step 10: Document the estimate
The team documents its entire estimating process including what
assumptions, data sources, and methodologies it used. The
documentation should reflect sufficient detail so that someone
unfamiliar with the program can easily recreate the estimate and
get the same result.

Documentation of the cost estimate should be updated regularly
following the same cadence that the Agile program has
established for updating the estimate itself as well as other
program management documents such as the vision, road map,
and product backlog.

Step 11: Present the estimate to management for approval
The team presents management with an overview of the estimate
that contains enough information about the basis for the estimate
including the quality of the program definition, availability and
reliability of the data, and key assumptions made. The
presentation should also include the outcome of the risk and
uncertainty analysis so that management can approve the
estimate at a confidence level of its choice.

Management should review and sign off on the estimate and its
underlying ground rules and assumptions. Management should
review and approve the presented information to show their
understanding of the documented assumptions.

Chapter 7: Agile and Program Monitoring and
Control

Page 149 GAO-24-105506 Agile Assessment Guide

Step 12: Update the estimate to reflect actual costs and changes
The team continually replaces the original estimate with actual
data and records reasons for variances and any lessons learned.
The team refreshes the estimate on a regular basis using EVM
information and updates the estimate to reflect major changes.

The estimate should be updated with information taken from
Agile artifacts and measures (e.g., burn up/down charts, velocity,
actual vs planned work, changes in requirements, program risk
assessments, etc.) at predetermined times that align with the
program’s Agile cadence. While new data are created and should
be captured in each iteration, it is recommended that the cost
estimate should be regularly updated to reflect all changes. The
estimate should also be kept current as the program passes
through new phases or milestones to provide the most recent
information to decision makers. For example, if the program
plans to award a new development contract, the estimate should
be updated to help provide information during the acquisition
planning process.

Source: GAO. | GAO-24-105506

These 12 steps are tied to four characteristics of a high-quality, reliable
cost estimate. These four characteristics and the best practices that they
include are used to determine how reliable a cost estimate is, which also
applies to Agile programs with some unique considerations, as discussed
here.

Well-documented: Cost estimates can easily be repeated or updated
and can be traced to original sources through auditing. Thorough
documentation explicitly identifies the primary methods, calculations,
results, rationales or assumptions, and sources of the data used to
generate each cost element’s estimate. Once the teams have been
determined, cost estimates for Agile programs tend to be straightforward.
The number of iterations needed to work off the product backlog is based
on relative sizing methods, such as assumed function points or story
points, and the total number in the backlog is divided by an average
team-specific velocity factor.

Comprehensive: An Agile cost estimate should reflect all effort contained
in the product backlog and each item in the product backlog should be
directly linked to value-based high-level requirements captured in the
program vision and road map. Ideally, all of the lower-level items that are
defined in the release or the iteration are hierarchically linked to the
product vision. A product-oriented WBS consisting of epics, features, user
stories, and other supporting items should provide a consistent framework
for the cost estimate, the schedule, and the EVM system.

Accurate: Historical data from other software programs should be used
as input to the initial point estimate. Additionally, Agile cost estimates
should be developed in constant year dollars and appropriately time-
phased to account for inflation, updated frequently as more information

Chapter 7: Agile and Program Monitoring and
Control

Page 150 GAO-24-105506 Agile Assessment Guide

becomes available or a new contract is awarded, and provide
documentation for any variances between planned and actual costs in
order to develop lessons learned to better inform future estimates.

Credible: Agile cost estimates are credible when input (e.g., the assumed
number of iterations, velocity, etc.) has been tested for sensitivity, and a
confidence level for the point estimate has been determined based on risk
and uncertainty analysis, cross checked by cost estimators using another
estimating method, and compared to an independent cost estimate with
similar results. These analyses can provide insight such as whether extra
iterations or additional resources are needed to deliver the must-have
features identified by stakeholders and customers.

Table 11 shows GAO’s characteristics of a reliable cost estimate and
examples of Agile artifacts that can be used to ensure the Agile cost
estimate meets the characteristics of a reliable cost estimate. This is not
an exhaustive list and terminology can vary widely by program. In
addition, agencies may have more specific requirements.

Table 11: Characteristics of a Reliable Cost Estimate and Agile Artifacts

Characteristic Examples of Agile artifacts and documentation
Well-
documented

• Release notes that discuss what features and enhancements are included in that release, any known defects,
and a summary of the spend plan

• Iteration commitments based on number of story points or other unit of measure used by the developers
• Contracted labor rates
• Number and composition of teams developing software
• Program documentation that is updated regularly. For example, a plan that captures technical changes to the

system, a process plan that outlines the business rules and workflow for the program, a quality assurance plan,
a cybersecurity plan, etc.

• Retrospective reports that discuss lessons learned and highlight features where more attention is needed in
future releases

• Release planning session executive briefings showing changes made to the road map during the planning
session

Comprehensive • Road map, work breakdown structure, and prioritized backlog that indicate must-have features to be developed
with input from stakeholders and subject matter experts

• Road map or vision aligned with program requirements documentation (e.g., a Statement of Objectives,
Performance Work Statement, or Statement of Work)

• Schedule reflecting all activities the organization, its contractors, and others need to perform to deliver the
must-have requirements in the vision

• Prioritized backlog consisting of epics, features, and stories
• Backlog queues and unfinished work and any defects, listed in priority order
• Relative sizing estimates and assumed velocity, number of iterations, and blended labor rate

Chapter 7: Agile and Program Monitoring and
Control

Page 151 GAO-24-105506 Agile Assessment Guide

Characteristic Examples of Agile artifacts and documentation
Accurate • The road map and vision documents can be used to time phase the estimate to properly account for inflation

• The estimate should be updated using actual data from the burn up/down charts so that decisions impacting the
budget can be based on the most recent information.

• After the estimate has been updated, retrospective and release planning briefings should discuss variances
between planned and actual costs to provide lessons learned for future estimates

Credible • Customer feedback from retrospective to provide insight into risks and priority of requirements
• Retrospective and release planning executive briefings should discuss threats and opportunities, including team

size, management support to avoid distractions, availability of tools to aid Agile efforts, and external
dependencies

• Daily standup meetings and other techniques used to mitigate threats and take advantage of opportunities for
the program

Source: GAO. | GAO-24-105506

Although Agile programs have flexible requirements and fixed budgets for
an iteration, conventional performance management tools, such as life
cycle cost estimating, are also applicable. As previously mentioned,
reliable cost estimates are still applicable as all federal programs must
follow the federal budgeting process. In addition, program controls
provide necessary oversight that legislators, government officials, and the
public can use to determine whether government programs are achieving
their goals. The following are three areas that should be examined for
Agile programs when developing a cost estimate:

• Consistent sizing. Developers typically rely on relative estimating
methods to determine software size. However, these methods are not
consistent across different Agile programs, or even across different
teams working on the same Agile program. Consistent sizing is a key
data quality consideration for reliable cost estimates.

• Integrate software developers and cost estimators. Since there is
no generally recognized standard unit of measurement for any of the
common approaches to estimate the cost of software, cost estimators
for Agile programs rely on the composition and expertise of the
developers. To improve the quality of the estimate, cost estimators
should be integrated with the developers and attend Agile ceremonies
(e.g., daily standup meetings and retrospectives).

• Cost estimating benefits. Since Agile programs have fixed costs, the
benefits of developing and updating an Agile program’s cost estimate
may not be recognized as important by technical personnel.

Next, we discuss these three areas and provide examples of how to apply
traditional cost estimating concepts to an Agile program.

Considerations for developing
a cost estimate for an Agile
program

Chapter 7: Agile and Program Monitoring and
Control

Page 152 GAO-24-105506 Agile Assessment Guide

While relative estimating methods (as discussed in chapter 3) are
typically used by developers throughout the development process, these
methods can vary from team to team on a single Agile program and do
not provide a consistent measure that can be used to develop a cost
estimate. This lack of consistency creates a challenge for cost estimators
to normalize the data received from the program’s reporting metrics (e.g.
the burn up/down charts).

However, traditional size metrics can be used with Agile relative
estimating metrics, and each sizing metric can serve a unique purpose for
an Agile program. For example, developers use relative estimating
techniques to determine how many story points to accomplish in an
iteration. After a release, estimators can use a traditional sizing technique
to establish the size of the effort and productivity rate achieved for the
features developed in that release. Then, the cost estimators work with
the developers to understand how the delivered features relate to the
traditional sizing metrics. While traditional sizing metrics will not eliminate
the challenges associated with the initial program estimate, data collected
can help cost estimators refine the initial estimate with respect to the
remaining requirements. This can also help establish an Agile program
database based on traditional sizing metrics to help the government
program office develop initial cost estimates for future Agile programs.

Table 12 provides an overview of the different measurement techniques
used by developers and cost estimators.

Table 12: Comparison of Consistent Sizing and Relative Sizing

 Cost estimating team: consistent sizing Developers: relative estimating
Purpose To develop a life cycle cost estimate for the

program.
To scale the size of work to assist in iteration and release
planning.

Strengths Provides a method that can be used across
programs and teams to measure work. From this,
cost estimates can be developed and databases can
be started to provide a basis to estimate future
programs.

Is performed by the team performing the work at a granular
level to increase the accuracy of the estimate for that
particular team.

Limitations Using consistent sizing is typically performed at a
higher level and requires insight into the program’s
scope, complexity, and interactions.

Relative estimating is team-dependent so measures cannot
be used for comparison between programs or even different
teams on the same program. Accuracy of sizing estimates
may initially limit the use of this approach, although sizing
typically improves over time. Additionally, it is performed later
in the life cycle so it cannot be used at the start of the
program.

Examples Source lines of code, function points. Story points, relative sizing, such as t-shirt sizing.

Source: GAO. | GAO-24-105506

Consistent sizing

Chapter 7: Agile and Program Monitoring and
Control

Page 153 GAO-24-105506 Agile Assessment Guide

Choosing a consistent sizing method depends on the software application
(purpose of the software and level of reliability needed) and the available
information. Cost estimators should work with the developers to
determine the most appropriate method. Further, when completing a
software size estimate to develop a total program cost estimate, it is
preferable to use two different methodologies, if available, rather than
relying on a single approach.

Agile in Action 5: Sizing and estimating before Agile teams are
established

In March 2019 we met with the Department of Homeland Security’s Cost Analysis
Division (CAD) to learn about their pilot to estimate Agile software development costs
for acquisition programs based on a simple function point analysis methodology. CAD
derived its approach from a measurement manual by The Simple Function Point
Association—an international nonprofit association dedicated to evolving and
promoting Simple Function Point methods. According to officials, this methodology
builds on the correlation of transactions to functional size, which correlates to program
cost.

The estimating process requires two to three days to complete and relies on a
program’s concept of operations document, which describes the functional capabilities
of a program, including a comprehensive list of business functions and all applicable
stakeholders. Initially, an analyst counts the number of action verbs for each action in
the concept of operations document. After assigning relative weights to the verbs to
reflect the difficulty of developing software associated with each action, the analyst
sums the weighted values of the transactions. A second analyst reviews the estimate.
After finalization, CAD works with the Chief Technology Officer, Program Office, and
Chief Information Officer to validate the count.

Upon validating the function point count, CAD develops and applies a productivity
factor to the count based on DHS historical data and industry standards. Additional
factors account for growth, complexity, and uniqueness. The function point count
multiplied by these various factors yields a cost estimate. Lastly, cost estimating
software is used to calculate a final risk adjusted output.

Because Agile considers high-level requirements in the long term as opposed to
knowing requirements up front, CAD believes that simple function point analysis gives
cost estimators a fast, reliable, repeatable process for cost estimates. CAD also
believes that program managers and oversight groups can track and manage progress
toward completion by using estimated function points. At the time we met them, CAD
officials noted that the simple function point analysis methodology still needed further
research and refinement to properly calibrate the tool they created and discover
appropriate uncertainty distributions.

Since then, CAD has explored using alternative software size measures. Each of these
new software size measures depends on artifacts that can be collected and counted at
the earliest stage of an Agile software acquisition lifecycle. These include capability
gaps, capabilities, and epics. Capability gaps—also called themes outside DHS—
identify differences between necessary capabilities and existing or planned ones. They

Chapter 7: Agile and Program Monitoring and
Control

Page 154 GAO-24-105506 Agile Assessment Guide

appear in project’s mission needs statement. Capabilities—also called initiatives
outside DHS—identify the means to accomplish a mission, function, or objective. They
are in the project’s concept of operations document. Epics are a body of work that can
be broken down into specific tasks based on the needs of end users. They are found in
the release road map as well as the product backlog. CAD has found that these high-
level software sizing measures can support estimates of effort and schedule at the
earliest stages of an Agile program.

After analyzing data from 20 programs, CAD has concluded that these alternative
measures can be used to predict software development effort, total contract
development effort, and total software development schedule for rough order of
magnitude estimates.

Source: GAO. I GAO-24-105506

While traditional estimating methods can be used by the organization’s
program office to develop a cost estimate for an Agile program before
development begins, Agile development metrics can be used to refine a
program’s cost estimate. For example, Agile uses velocity as a measure
of productivity that captures the amount of work each team can deliver in
each iteration. Because velocity is a team-specific metric, it should not be
used to dictate how much work any team should complete in an iteration;
however, a team-specific velocity that is traceable in their Agile tool can
be used as an input for a cost estimate once development has begun.

No matter which sizing method is chosen, actual costs can vary widely
from the estimated costs. As a result, any point estimate should be
accompanied by an estimated range of probability, as identified in step 9
of the GAO 12-step estimating process listed previously in this chapter.
This is especially important for initial program estimates that are used to
develop a budget.

There is no generally recognized standard unit of measurement for any of
the common approaches to Agile cost estimation. Story points, user
stories, etc. are all subjective and dependent on the experience and skills
of the developers. As a result, cost estimators for Agile programs rely on
the composition and expertise of the developers. In addition, the cost
estimate should consider the time needed to stand up an Agile team as
well as how long it will take to achieve team maturity. Therefore, to
improve the quality of the estimate, cost estimators should be integrated
with the developers and should participate in release planning sessions to
understand the relationship between the backlog and the developers’
relative estimating techniques so that they can further refine the total
program’s cost estimate.

Integrate software developers
and cost estimators

Chapter 7: Agile and Program Monitoring and
Control

Page 155 GAO-24-105506 Agile Assessment Guide

In other words, Agile cost estimating requires a more iterative, integrated,
and collaborative approach. Traditional programs often treat cost analysis
as a separate activity, rather than as an integrated team endeavor. For an
Agile program, a cost estimator should be integrated with the systems
engineers and developers as each release is scoped, developed, and
tested.93 This ongoing collaboration among the customers, developers,
systems engineers, cost estimators, and other stakeholders is critical. It
helps to ensure agreement on requirements prioritization in the backlog
and to gain a thorough understanding of the amount of effort required for
each release. It also enables an integrated assessment of the operational
and programmatic risks, technical performance, cost drivers, affordability,
and schedules.

Although the cost analysts and estimators should work closely with the
Agile development team, cost analysts should balance proximity with a
professional distance to retain objectivity in the same ways that apply to
other development approaches. Thus, while government estimators may
depend on contractor technical expertise to better understand the team’s
productivity and dynamics, they should continue to include alternate,
independent, and objective estimating methodologies, especially when
the estimate will be used to assess contractor performance or the
reasonableness of the contractor’s cost proposals.

Cost estimating for an Agile program can be challenging, especially for
teams new to Agile development.94 However, a reliable cost estimate can
provide benefits to an Agile program. For example, the cost estimate can
be used to support the government budgeting process and to help inform
management decisions.

Cost estimating techniques for an Agile program are similar to traditional
development programs, since the federal budgeting process requires an
estimate of the total cost of the program before it has been approved.
However, as discussed in the GAO Cost Guide, because cost estimates
predict future program costs, they are associated with uncertainty. This

93As discussed in Chapter 3, there are alternatives to physical co-location. These include
collaborative remote environments that allow teams to operate from separate physical
locations while sharing knowledge rapidly and continually through assorted tools.

94As discussed in the Cost Estimating and Assessment Guide: Best Practices for
Developing and Managing Program Costs, GAO-20-195G, there are many challenges to
estimating software costs. These challenges will apply to Agile programs, especially when
deriving an initial estimate for program initiation. See the GAO Cost Guide software
appendix for more information.

Cost estimating benefits

https://www.gao.gov/products/GAO-20-195G

Chapter 7: Agile and Program Monitoring and
Control

Page 156 GAO-24-105506 Agile Assessment Guide

level of uncertainty decreases over time as the program definition
increases for both Agile and traditional programs due to a better
understanding of the work and more insight into the programs’
productivity.

While a program can develop a rough order of magnitude cost estimate
early in its life cycle, it may be challenging to precisely understand costs
or schedule until the teams have established a rhythm to their work. As a
result, cost estimating for an Agile program consists of an ongoing “just in
time” activity tightly integrated with the activities of the developers and
engineers. Moreover, the fidelity of the cost estimate increases once
teams have been established to help estimate the level of work for each
requirement, as described in chapter 5, and can further improve with
subsequent releases as the estimating team captures performance
productivity metrics for deployed releases. Furthermore, the 12-step cost
estimating process described earlier in this chapter provides a framework
that can be used to develop a reliable estimate and provide information
for use during negotiations and in justifying acquisition decisions.

Maintaining an integrated cost estimating effort throughout the course of
the program allows Agile programs to collect the data necessary to
estimate the requirements/features that fit within the program’s total
budget as it progresses. A budget may be fixed for a single iteration, but if
the requirements are not completed at the end of an iteration,
management may need information to provide justification for additional
funds and a change in the schedule. Cost estimating can provide
managers with valuable information about the budget needed to maintain
a certain level of support.

GAO’s Schedule Assessment Guide (Schedule Guide) was developed in
2015 to establish a consistent methodology based on best practices for
developing and maintaining high-quality schedules that forecast reliable
dates. The GAO Schedule Guide discusses 10 best practices that, when
followed, should result in a high quality, reliable schedule. These best
practices are part of a cyclical process where each best practice is one
step in that process.

These steps have been collapsed into four general characteristics for
sound schedule estimating: comprehensive, well-constructed, credible,
and controlled.

Just as in any other approach to program execution, developing and
executing a schedule for an Agile program is essential. A schedule

Scheduling best
practices in an Agile
environment

Chapter 7: Agile and Program Monitoring and
Control

Page 157 GAO-24-105506 Agile Assessment Guide

provides a focus on deadlines for specific goals and activities; ensures
that all required actions are (planned to be) completed; identifies
predecessor and successor relationships; and it identifies timelines and
an estimate for the amount of time required to complete various
functions/activities.

While the Agile software development philosophy is different from that of
Waterfall development, the need for a high-quality program schedule is
still applicable to all federal programs. All programs need to establish a
schedule to be accountable for delivering a value-based outcome. To that
end, Agile development programs should adhere to GAO’s scheduling
best practices to develop a schedule, recognizing that most government
acquisition efforts using Agile will also have non-Agile components that
must be captured in the integrated master schedule. The scheduler
should properly capture and link both Agile and non-Agile tasks. The
following narrative describes the applicability and benefits of the
scheduling best practices for an Agile software development program,
identifies key documentation differences between Agile and traditional
scheduling and highlights key considerations when scheduling an Agile
program.

Agile methods provide many useful progress indicators to inform
management about the status of high-priority features. Many artifacts
used to manage Agile development programs can provide evidence that
the program is meeting the GAO scheduling best practices. These items
can aid in assessing the planning that program offices perform to develop
their schedule. Table 13 shows the 10 scheduling best practices, a
description of each best practice in an Agile environment, and examples
of Agile artifacts and documentation that can be used to support that best
practice. This is not an exhaustive list and terminology can vary widely by
program. In addition, agencies may have more specific requirements.

Agile measures and scheduling
best practices

Chapter 7: Agile and Program Monitoring and
Control

Page 158 GAO-24-105506 Agile Assessment Guide

Table 13: 10 GAO Schedule Estimating Best Practices and Agile Examples

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile artifacts and
documentation

Best Practice 1: Capturing all activities
The schedule should reflect all activities as
defined in the program’s work breakdown
structure (WBS), which defines in detail
the work necessary to accomplish a
program’s objectives, including activities
both the owner and contractor are to
perform.

During planning, work on the road map
should be prioritized with input from
stakeholders and subject matter experts.
The schedule should include epics and
features from the road map that are linked
to the contract, the backlog, and all
organization-specific tasks.

• Road map
• WBS
• Prioritized backlog

Best Practice 2: Sequencing all
activities
The schedule should be planned so that
critical program dates can be met. To do
this, activities need to be logically
sequenced and linked—that is, listed in the
order in which they are to be carried out
and joined with logic.

The program schedule should reflect work
at the epic and feature levels. The order of
work should align with the prioritization
included in the road map and backlog.
Additionally, any key dependencies
between features should be identified,
where applicable.

• Kanban board (or similar)
• Government oversight documents
• Road map
• Prioritized backlog

Best Practice 3: Assigning resources to
all activities
The schedule should reflect the resources
(labor, materials, travel, facilities,
equipment and the like) needed to do the
work, whether they will be available when
needed, and any funding or time
constraints.

During release planning, each team
member should assess their availability for
development activities with respect to other
commitments (e.g., vacations, holidays, and
other leave). Additionally, these
assessments should account for team
facilitator and other subject matter experts
that could be needed to complete the
planned work.

• Kanban board (or similar)
• Team calendars
• Project management software tailored

for Agile to track user stories and
resources

Best Practice 4: Establishing the
duration of all activities
The schedule should realistically reflect
how long each activity will take. Durations
should be reasonably short and
meaningful and should allow for discrete
progress measurement.

Durations are time boxed in Agile, which
makes each release a consistent duration
in the schedule. However, since
requirements can fluctuate, it is important to
track what work has been accomplished for
each release in the schedule (see best
practice #9 for more information).

• Prioritized backlog
• Release plans
• Road map

Best Practice 5: Verifying that the
schedule can be traced horizontally and
vertically
The schedule should be horizontally
traceable, meaning that it should link
products and outcomes associated with
other sequenced activities. The schedule
should also be vertically traceable—that is,
data are consistent between different
levels of a schedule.

To be horizontally traceable, the program
schedule should include the sequenced
plan for developing all epics and features,
along with all dependency information. To
be vertically traceable, the program
schedule should align with the Agile road
map, prioritized backlog, and burn up/down
charts. The schedule should also tie back to
the program’s Vision and Concept of
Operations (CONOPs) documents.

• Program vision
• Road map
• Releases included in program

schedule
• Prioritized backlog
• Kanban board (or similar)
• Burn up/down charts
• Technical documents like a CONOPs

Chapter 7: Agile and Program Monitoring and
Control

Page 159 GAO-24-105506 Agile Assessment Guide

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile artifacts and
documentation

Best Practice 6: Confirming that the
critical path is valid
The schedule should identify the program’s
critical path— the path of longest duration
through the sequence of activities.
Establishing a valid critical path is
necessary for examining the effects of any
activity’s slipping along this path.

In the schedule, critical path management
should be performed at the epic and feature
levels, since the critical path may cover
multiple Agile epics and features and
include non-Agile tasks.. For an Agile
development program, the critical path is
managed during iteration planning and daily
standup meetings.

• Epics and features sequenced
according to the road map

Best Practice 7: Ensuring that total float
is valid
The schedule should identify reasonable
total float (or slack).a

For Agile tasks, float is tracked at the epic
and feature levels.

• Burn up/down charts

Best Practice 8: Conducting a schedule
risk analysis
A schedule risk analysis starts with a good
critical path method schedule. Data about
program schedule risks are incorporated
into a statistical simulation to predict the
level of confidence in meeting a program’s
completion date.

Even though iterations are time boxed, a
schedule risk analysis provides a
confidence level to the schedule’s finish
date to, in part, determine if additional
resources need to be added to deliver all
must-have features. To do this, risk ranges
should be applied to all assumptions,
including the number of iterations needed
and the team velocity measures. Risk
analysis also helps identify threats and
opportunities (e.g., team size, management
support, and availability of tools) facing the
program. Additionally, iteration planning
sessions provide valuable information on
particular risks that could impact the
delivery of must-have features that can be
used to inform the risk analysis.

• Program vision
• Iteration planning sessions
• Retrospectives
• Assumptions regarding the number of

iterations, story points, and velocity

Best Practice 9: Updating the schedule
using actual progress and logic
Progress updates and logic provide a
realistic forecast of start and completion
dates for program activities.

In Agile development programs, feature
development progress is updated at the
end of each iteration and the cumulative
results for all of the features and epics are
displayed through burn up/down charts.
Quantifiable back-up data regarding the
completion of user stories should inform
feature progress. Additionally,
retrospectives are conducted to capture
lessons learned at the end of each release
to reduce future risks, improve customer
commitment, and motivate teams.
Demonstrations of working software
determine stakeholder and customer
satisfaction. Finally, daily standup meetings
are conducted to check feature
development status during iterations and
any impediments the team is encountering.
If the program requires more time to finish
the epics and features, then the schedule
should be extended to reflect this delay.

• Epics and features are included in
program schedule

• Prioritized backlog
• Burn up/down charts
• Retrospective summaries
• Release plans and reports

Chapter 7: Agile and Program Monitoring and
Control

Page 160 GAO-24-105506 Agile Assessment Guide

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile artifacts and
documentation

Best Practice 10: Maintaining a baseline
schedule
A baseline schedule is the basis for
managing the program scope, the time
period for accomplishing it, and the
required resources. The baseline schedule
is designated the target schedule and
subject to a configuration management
process.

The road map and release plans help
inform the baseline from which to measure
schedule variances. Demonstrations of
working software determine stakeholder
and customer satisfaction.

• Road map
• Iteration planning sessions
• Prioritized backlog
• Releases plans and reports
• Retrospective summaries

Source: GAO. | GAO-24-105506
aTotal float is the amount of time that an activity can be delayed or extended before delays affect the
program’s finish date. As such, it depends on the entire schedule rather than individual user stories.
For further information on float and how to calculate float, see Schedule Assessment Guide: Best
Practices for Project Schedules, GAO-16-89G (Washington, D.C.: Dec. 22, 2015).

Although an Agile development program consists of time boxed units with
a fixed schedule, conventional performance management tools, such as
an integrated program schedule, should be applied. The following five
areas provide additional context regarding the benefits of a high-quality,
reliable schedule to help manage program risk for an Agile development
program:

• Planning for all activities
• Minimizing the use of schedule constraints
• Assigning resources
• Conducting a schedule risk analysis
• Developing and using a schedule baseline

The following discusses these considerations and provide examples on
how to apply these scheduling concepts to an Agile program.

While Agile emphasizes that only near-term work is planned in detail
(e.g., the next iteration), programs need to define their overall goal in a
vision and plan the releases needed to satisfy the vision. As discussed in
Chapter 4, the detailed plan is subject to change, but the vision provides
a high-level view and direction for the work to be accomplished for the
entire program. Additionally, while the team self-organizes its own work, it
must be cognizant of dependencies with other teams, related Agile and
non-Agile development programs, and equipment.

An integrated master schedule that includes Agile software development
efforts should capture all the planned features needed to accomplish the

Considerations for scheduling
an Agile program

Planning for all activities

https://www.gao.gov/products/GAO-16-89G

Chapter 7: Agile and Program Monitoring and
Control

Page 161 GAO-24-105506 Agile Assessment Guide

program goals at an appropriate level of detail using rolling wave
planning. This schedule should include all government and contractor
activities. Developing an integrated master schedule for the whole
program provides a comprehensive, end-to-end view of all the features
necessary to accomplish the program’s goals. Including features
enhances the utility of the schedule as a coordination and communication
tool and allows for better performance tracking and measurement. For
example, additional information in the schedule helps to ensure that it can
serve as the summary, intermediate, and detailed schedule. Including
high-level features in the schedule is also a foundational best practice for
most other scheduling best practices. If the schedule does not contain
planning for all features for the program’s duration, it will lack horizontal
and vertical traceability, a valid critical path will not exist, and the
schedule’s risk analysis will not be valid.

A common approach in Agile software development is to develop and
deliver working software in fixed-length iterations, typically 2-4 weeks in
length. Constraints may appear to provide a straightforward way to model
the fixed start and end dates of iterations; however, using constraints
reduces the utility of the schedule as a coordination tool among Agile
teams, management, and other resources. The value of this coordination
is highlighted by several effective practices for applying Agile methods on
federal IT programs, such as effectively involving experts and other
resources, addressing requirements related to security and progress
monitoring, and identifying and addressing impediments at the
organization level as well as within the program.95

Additionally, removing constraints from the schedule allows the schedule
to supplement the duration planning information included in other Agile
tools for tracking. In this way, program managers can make key decisions
by observing what work is scheduled to occur after milestones are set
during early Agile planning. For example, they can determine whether
more resources are needed to complete the work in the set time frame or
if those requirements can be completed after the Agile deadline.

Using constraints only when necessary and justified in the schedule
documentation helps to ensure that planned dates in the schedule can
respond dynamically to changes. Date constraints can also cause

95GAO, Software Development: Effective Practices and Federal Challenges in Applying
Agile Methods, GAO-12-681 (Washington, D.C.: July 27, 2012).

Minimizing the use of schedule
constraints

https://www.gao.gov/products/GAO-12-681

Chapter 7: Agile and Program Monitoring and
Control

Page 162 GAO-24-105506 Agile Assessment Guide

unrealistic resource allocations, reduce horizontal traceability within the
schedule, and interfere with the derivation of valid critical paths.

Although Agile emphasizes stable and self-organizing teams, it is still
beneficial to explicitly assign resources to activities in the schedule. Many
activities require interfacing with resources outside of the program, such
as activities involving subject matter experts and non-labor resources.
Agile emphasizes working at a sustainable pace, and including resources
in the schedule can help ensure this occurs by providing insight into
developers’ availability and when additional equipment is needed.

Furthermore, the amount of available resources affects estimates of work
and duration, so the schedule should include the labor and non-labor
resources needed to accomplish the work. The level of detail used in
assigning resources should be commensurate with the level of detail of
activities in the schedule. For example, as more information is known
about the program, additional resources, such as automated testing tools,
could be identified for purchase in order to increase the productivity rate.
Among other things, assigning resources helps ensure that the schedule
is a useful tool for coordinating among resources so they are available
when needed, that schedule estimates are valid, and that the schedule
risk analysis provides a full understanding of schedule risk.

Agile self-organizing teams and iterative processes can be viewed as
ways to mitigate risk in complex software programs. However, all
programs face risk and uncertainty and the likelihood and consequences
of each risk should be examined. For Agile development programs,
effective practices include developing initial plans at a high level and
updating frequently as more is learned about the program. Further, the
potential impact of some issues, such as technical debt or team size,
should be considered earlier rather than later.

A schedule risk analysis should be conducted throughout an Agile
development program’s iterative process to identify the risks, paths, and
activities most likely to delay the program and to serve as a basis for
determining schedule risk contingencies or other mitigating measures. If
time or resources are insufficient to conduct a schedule risk analysis for
the full program or the level of detail is unclear because of rolling wave
planning, the analysis should be performed on a summary version of the
schedule.

Agile emphasizes trading off requirements in order to meet a fixed
completion date. Therefore, potential delays or opportunities and

Assigning resources

Conducting a schedule risk
analysis

Chapter 7: Agile and Program Monitoring and
Control

Page 163 GAO-24-105506 Agile Assessment Guide

mitigating contingencies should be analyzed to understand which work
may be affected or re-prioritized.

Lastly, the schedule risk analysis for an Agile development program
considers the risks affecting team performance, such as team size or the
availability and feasibility of tools and practices necessary to achieve the
team’s goals. For example, as discussed in Chapter 3, a commonly
accepted Agile practice is the use of continuous integration to
automatically run unit and integration tests every time code is checked in.
This greatly increases the speed of testing and provides instant feedback
on code quality, so if the team plans to use continuous integration but is
not provided the resources to implement it, the program will likely not be
able to meet all the requirements in the time allotted.

A central tenet of Agile is to welcome change. As a result, teams practice
rolling wave planning, in which only near-term work is planned in detail.
However, welcoming change does not mean that software is developed
and delivered in an undisciplined or ad hoc manner. Agile’s priority to
deliver software in iterations, typically in time boxed iterations of 2-4
weeks-is guided by the program’s vision, which establishes a high-level
definition of the cost, schedule, and scope goals for the program and
provides a basis for specifying expected outcomes for each iteration.
These critical features identify the program’s schedule baseline and allow
product owners to reprioritize work in accordance with the vision at the
end of each iteration.

In creating the baseline using the rolling wave planning process, updates
should contain enough detail to enable a collaborative agreement
between product owners and developers without making schedule
updates overly frequent or cumbersome. As the schedule is updated,
changes should be documented in progress records and the schedule
narrative. For example, this could include using data from the completed
backlog and burn up/down charts. Schedule trends should be used to
identify deviations from the baseline and to understand the need for
changes. Developing and using a schedule baseline provides a good
basis for measuring and understanding progress and maintaining
accountability.

Developing and using a
schedule baseline

Chapter 7: Agile and Program Monitoring and
Control

Page 164 GAO-24-105506 Agile Assessment Guide

Case study 18: Cost and schedule estimating for an Agile
program, from FEMA Grants Modernization, GAO-19-164

In April 2019, GAO reported that the Federal Emergency Management Agency (FEMA)
Grants Management Modernization (GMM) program’s May 2017 initial life cycle cost
estimate was reliable; however, key assumptions made about the program had
changed. Thus, the initial cost estimate no longer reflected the current approach for the
program. Additionally, GAO found GMM’s program schedule was inconsistent with
leading practices. Of particular concern was that the program’s final delivery date of
September 2020 was not informed by a realistic assessment of GMM development
activities but by imposing an unsubstantiated delivery date.

Key assumptions about the GMM program changed after the May 2017 cost estimate
was approved, including a change in technical approach, an increase in the number of
system development personnel, and significant delays and complexities with data
migration. FEMA officials reported that they anticipated the cost estimate to increase as
a result, and that this increase might be high enough to breach the $251 million
threshold set in GMM’s May 2017 acquisition program baseline. The program informed
the DHS Acquisition Review Board of this anticipated breach, and on September 12,
2018, the board declared that the program was in a cost breach status. In December
2018, program officials stated that they had completed a revised cost estimate using a
new cost estimating methodology that was developed by DHS’s Cost Analysis Division
and tailored for Agile programs.

In addition to an outdated cost estimate, GAO found GMM’s schedule to be unreliable.
One of the most significant issues was that the program’s final delivery date of
September 2020 was informed by an unsubstantiated delivery date. Program officials
stated that they had been uncertain about the level of rigor that should be applied to the
GMM schedule, given their use of Agile development. However, leading practices state
that program schedules should meet all the scheduling practices, regardless of whether
a program is using Agile development. Program officials also stated that the delay in
awarding and starting the Agile contract delayed other important activities. A more
robust schedule could have helped FEMA predict the impact of delays on remaining
activities and identify which activities appeared most critical so that the program could
ensure that any risks in delaying those activities were properly mitigated.
GAO reported that establishing an updated cost estimate should help FEMA better
understand the expected costs to deliver GMM under the program’s current approach
and time frames. However, without a robust schedule to forecast whether FEMA’s
aggressive delivery goal for GMM is realistic to achieve, leadership will be limited in its
ability to make informed decisions on what additional increases in cost or reductions in
scope might be needed to deliver a complete system.

In 2020, the GMM program management office updated the program schedule to
address leading practices for a reliable schedule. Specifically, in February 2020, FEMA
provided us with a demonstration of the new schedule captured in schedule
management software tools. Based on the demonstration of the updated GMM
schedule and documents provided, we concluded that the quality of the schedule had
largely improved since our last review. While GMM did not address all aspects of the
scheduling best practices, GAO believes that the program has made substantial

https://www.gao.gov/products/GAO-19-164

Chapter 7: Agile and Program Monitoring and
Control

Page 165 GAO-24-105506 Agile Assessment Guide

enough improvements to justify closure of this recommendation. By taking these steps
to establish a reliable schedule, FEMA is better prepared to forecast whether its system
delivery goals for GMM are realistic and has empowered leadership to make more
informed resource decisions.

GAO, FEMA Grants Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164 (Washington, D.C.: April 9, 2019).

Source: GAO. I GAO-24-105506

https://www.gao.gov/products/GAO-19-164

Chapter 7: Agile and Program Monitoring and
Control

Page 166 GAO-24-105506 Agile Assessment Guide

The goal of any software development process should be to maximize the
flow of value to the users. One method frequently used in the federal
government to measure the value of work accomplished is earned value
management (EVM), which can alert program managers to potential
problems sooner than they might be discovered if only tracking
expenditures. In fact, EVM is often required for programs once they reach
a certain threshold.

There are other methods besides EVM that can be used to track
performance for Agile programs; however, effective performance
management practices should still be in place, regardless of the
development paradigm. For example, volume 1 of the DOD section 809
Report states that the program manager should approve the appropriate
program monitoring and control methods, which may include EVM.96 The
report states that these methods should provide faith in the quality of the
data and, at a minimum, track schedule, cost, and estimate at completion.
It adds that program managers should select the appropriate resources
for their toolkit based on program characteristics. For example, Agile
programs should use real-time tools designed to track and monitor Agile
software development. In other words, for EVM to work with Agile,
program office staff must tailor EVM to integrate into the overall program
management approach.

The GAO Cost Guide methodology for developing, managing, and
evaluating cost estimates is based on best practices across the federal
government. It also outlines 13 activities that are fundamental to the EVM
process.

1. Define the scope of effort with a work breakdown structure.
2. Identify who in the organization will perform the work.
3. Schedule the work to a timeline.
4. Estimate the resources and authorize budgets.
5. Determine objective measure of earned value.
6. Develop the performance measurement baseline.
7. Execute the work plan and record all costs.

96Section 809 Panel, Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, Volume 1 of 3, section 4: “Earned Value Management for
Software Programs Using Agile”, (Arlington, VA: January 2018).

Earned value
management best
practices in an Agile
environment

Performance Tracking: Alternatives to
Earned Value Management
The Advisory Panel on Streamlining and
Codifying Acquisition Regulations (Section
809 Panel), authorized by Section 809 of the
National Defense Authorization Act for Fiscal
Year 2016 (Pub. L. No. 114-92),
recommended eliminating earned value
management (EVM) requirements for Agile
programs. However, the Panel continues to
emphasize the use of “appropriate project
monitoring and control methods.”
One method of performance tracking is Value
Stream Mapping (VSM). A value stream is
the sequence of steps used to deliver value
to a customer. VSM consists of a flowchart
that includes the whole sequence for delivery
of value and includes the people who do the
work, the systems, and the flow of information
and materials. The flow of value is triggered
by an important event and ends when value
has been delivered. VSM can be used to
optimize the system in order to reduce the
number of hand-offs and reduce the time
required to deliver value.
Source: GAO Analysis of DOD and Scaled Agile, Inc.
information. | GAO-24-105506

Chapter 7: Agile and Program Monitoring and
Control

Page 167 GAO-24-105506 Agile Assessment Guide

8. Analyze earned value management performance data and record
variances from the performance measurement baseline plan.

9. Forecast estimates-at-completion using earned value management.
10. Conduct an integrated cost-schedule risk analysis.
11. Compare estimates-at-completion from earned value management

(step 9) with estimates-at-completion from risk analysis (step 10).
12. Take management action to respond to risks.
13. Update the performance measurement baseline as changes occur.
14. To evaluate the consistency of an organization’s EVM system, GAO

identified three characteristics of a high-quality, reliable EVM system
that can be used to determine the overall quality of that EVM system.
Table 14 displays these characteristics and associated best practices
identified in the GAO Cost Guide.

Table 14: GAO Earned Value Management Best Practices

Characteristic Best practice
Comprehensive: a comprehensive earned value
management (EVM) system is in place

The program has a certified EVM system
An integrated baseline review verified that the baseline budget and schedule
captured the entire scope of work, risks were understood, and available and
planned resources were adequate
The schedule reflects the work breakdown structure, the logical sequencing
of activities, and the necessary resources
EVM system surveillance is being performed

Accurate: the data resulting from the EVM system are
reliable

EVM system data do not contain anomalies
EVM system data are consistent among various reporting formats
Estimates-at-complete are realistic

Informative: the program management team is using
earned value management system data for decision-
making purposes

EVM system data are reviewed on a regular basis
Management uses EVM system data to develop corrective action plans
The performance measurement baseline is updated to reflect changes

Source: GAO. | GAO-24-105506

The GAO Cost Guide also describes key benefits of using EVM. These
include improving insight into program performance, reducing cycle time
to product delivery, focusing management attention on the most critical
issues, fostering accountability, and providing objective information for
measuring progress. While Agile approaches should reduce program
technical risks through early delivery, EVM can provide additional insight
into the relationship between scope, cost, schedule, and performance and
this integrated data can be used to better inform management decisions.

Chapter 7: Agile and Program Monitoring and
Control

Page 168 GAO-24-105506 Agile Assessment Guide

According to the Federal Acquisition Regulation (FAR), an EVM system is
required for major acquisitions for development, in accordance with the
Office of Management and Budget (OMB) Circular A-11. The FAR also
states that the government can require EVM systems for other
acquisitions, in accordance with agency procedures. For example, the
Department of Defense requires compliance with EVM guidelines for cost
or incentive contracts greater than or equal to $20 million.97 However, just
as EVM is not applied to all traditional programs, it should not necessarily
be applied to small Agile programs. The amount of effort implementing
EVM on small programs may pose unnecessary costs for little value in
return, but it can be implemented on medium and large Agile programs.
Table 15 shows the 13 activities of an EVM system implementation and
execution with examples of how an Agile program can meet each of the
steps. This is not an exhaustive list and terminology can vary widely by
program.

Table 15: 13 Earned Value Management Activities and Agile Examples

EVM Activity Agile environment example
Activity 1: Define the scope of
effort with a work breakdown
structure

The work breakdown structure should be based on the prioritized backlog, typically at the feature
level. Given the dynamic nature of Agile, tracking at lower levels, such as user stories, after
detailed iteration planning has been completed may not yield valuable data because of the
frequent changes made. However, metrics from lower levels can provide quantifiable backup data
for measuring performance at the feature level and higher.

Activity 2: Identify who in the
organization will perform the work

As in conventional programs, work assignments should be consolidated at the level of a control
account manager. This is often done during iteration and release planning sessions and tracked
in Agile program management tools.

Activity 3: Schedule the work to a
timeline

The schedule should be based on the product road map, which shows a plan for epic and feature
development across releases.

Activity 4: Estimate resources
and authorize budgets

Features, or something similar, should be the basis for identifying work package scope and
budget. Given the dynamic nature of Agile programs, defining scope and budget below this level
will lead to too much volatility, potentially masking serious performance issues.

Activity 5: Determine objective
measures of earned value

Progress should be tied to the completion of work and not the completion of time boxed events.
The technique used for taking credit for performance should be documented. Additional
information on measuring earned value is described in this step.

Activity 6: Develop the
performance measurement
baseline

The performance measurement baseline should be based on the work breakdown structure and
the integrated master schedule and be traceable to the product road map. The smallest building
block for the performance measurement baseline is at the control account level where each
control account is based on a feature or group of features.

97Department of Defense. DOD Instruction 5000.85, table 7 (Aug. 6, 2020, incorporating
change 1, Nov. 4, 2021).

Agile measures and Earned
Value Management

Chapter 7: Agile and Program Monitoring and
Control

Page 169 GAO-24-105506 Agile Assessment Guide

EVM Activity Agile environment example
Activity 7: Execute the work plan
and record all costs

The level at which effort is converted into cost in the performance measurement baseline should
be defined and traceable to Agile metrics captured by the program. These metrics can vary from
program to program, but some common ones to consider tracking are the iteration burn down
chart, cycle time, and cumulative flow diagram. More information about metrics is included in
Chapter 8.

Activity 8: Analyze EVM
performance data and record
variances from the performance
measurement baseline

Variances should be determined at the work package level within each control account based on
quantifiable backup data that supports each associated feature. For example, an iteration burn up
chart can show what work that was planned was not accomplished during the iteration. Further,
release retrospectives can highlight impediments that occurred during a release and highlight
whether feature development is on track according to the road map developed at the beginning of
the release.

Activity 9: Forecast estimates-at-
completion using EVM

Metrics generated from Agile tools can typically be used to forecast estimates-at-complete.
Adding the completed work and the remaining work divided by an efficiency factor yields an
estimate-at-complete. The efficiency factor is calculated by dividing the completed work by the
effort used to perform that work.

Activity 10: Conduct an
integrated cost-schedule risk
analysis

Similar to a cost risk and uncertainty analysis and a schedule risk analysis, an integrated cost-
schedule risk analysis can be completed by developing risk distributions around Agile-specific
metrics to provide a range around the program’s cost and schedule related to the total number of
requirements in the prioritized backlog.

Activity 11: Compare estimates-
at-completion from EVM (step 9)
with estimates-at-completion from
risk analysis (step 10)

These two steps should be performed for Agile programs as they are for other programs
according to the program’s Agile cadence.

Activity 12: Take management
action to respond to risks
Activity 13: Update the
performance measurement
baseline as changes occur

Activities in the product backlog and road map at the feature level should have an assigned
budget that is under baseline control. Changes to the backlog at this level should be documented
and should occur in accordance with baseline change processes. Any changes that occur can be
documented and reviewed by management in release retrospective notes.

Source: GAO analysis of data from DOD, National Defense Industrial Association’s Integrated Program Management Division, and GAO. | GAO-24-105506

Rework, such as developers modifying or revising existing code to
improve performance, efficiency, readability, or simplicity without affecting
functionality, may be needed for program completion. Agile programs
should include adequate budget and schedule for rework in the
performance measurement baseline and integrated master schedule so
these will also appear in EVM. Some programs may assign rework to a
separate planning package from the original task. Alternatively,
adjustments to earned value can reflect that specific features were not
completed or that rework is occurring.

Some Agile programs are required to provide EVM reporting based on
guidance and established reporting thresholds. These data can assist the
program manager in providing oversight officials with vital program
performance information. Much of the data already associated with

Chapter 7: Agile and Program Monitoring and
Control

Page 170 GAO-24-105506 Agile Assessment Guide

implementing Agile can be used to support EVM reporting, so providing
EVM reporting does not have to be an overly time-consuming task.

Ultimately, EVM is effective for Agile programs when it is integrated with
technical performance and EVM processes are augmented with a
rigorous systems engineering process. The following is an example of
how one program supported by existing Agile metrics reported to OMB.

Agile in Action 6: Performance reporting requirements

In February 2018, we met with the National Nuclear Security Administration’s (NNSA)
Generation 2 (G2) program office to discuss how they meet the Office of Management
and Budget’s (OMB) Capital Planning and Investment Control (CPIC) reporting
requirements for major IT investments. Officials said that they worked closely with OMB
and NNSA senior management to meet the program’s CPIC reporting requirements to
align the program’s Agile methods. For example, officials said that G2 defines “project”
as a program increment (e.g., 14 weeks comprised of seven 2-week iterations).

However, because CPIC’s project reporting structure did not align with G2’s Agile
cadence or contractors’ cost reporting requirements, officials said that reporting cost
and schedule variances for CPIC reports posed a challenge to G2. As a result, the
program developed a repeatable and transparent way to proportion their cost and Agile
cadence to the CPIC reporting structure. To determine the prorated project cost of a
program increment within a month, G2 calculates the number of days for the program
increment in a month compared to the total days and proportion it has to the actual
effort charged for the whole program. Since the activities are time boxed with variable
scope, there is no schedule variance.

Officials said that, although this allows G2 to follow CPIC reporting requirements,
resulting variances may be misleading and require further explanation. For example,
G2 provided the following rationale for a cost variance in its August 2019 CPIC monthly
report: “Project/activity PI12 completed on schedule and finished with a positive 3%
financial variance as previously projected.”

CPIC reporting also requires a documented risk register. Officials said that, while G2
addresses high-level risks through a traditional risk register, the program primarily
addresses risk through activities (e.g., release planning and retrospectives) as part of
using the Agile methodology. For CPIC reporting, risk actions are typically reported at a
high level, tying updates to formal risk reviews for each program increment in the
reporting period.

Source: GAO. I GAO-24-105506

Traditional programs analyze and review EVM data on a monthly basis so
that problems can be addressed as soon as they occur and cost and
schedule overruns can be avoided. Then, using the EVM data, managers
assess cost and schedule performance trends. When cost and schedule
are not fixed for a program, EVM data show a negative cost variance if

Chapter 7: Agile and Program Monitoring and
Control

Page 171 GAO-24-105506 Agile Assessment Guide

the program will be over budget and a negative schedule variance if the
program is behind schedule.

Agile programs use alternative methods to track risk in combination with a
flexible scope and fixed cost and schedule. However, EVM concepts can
provide managers with important insights because in government
programs scope is flexible for an iteration or release, but is not
necessarily flexible for the program as a whole. To highlight this
difference, instead of monthly reports that show projected cost or
schedule variances, reports could be included as part of a release
retrospective summary that show, along with other metrics familiar to
Agile practitioners, what the estimated cost and schedule overruns are for
the program if it completes all work in the backlog. Figure 15 shows how
to visualize EVM tracking for traditional and Agile methods.

Chapter 7: Agile and Program Monitoring and
Control

Page 172 GAO-24-105506 Agile Assessment Guide

Figure 15: Traditional and Agile Earned Value Management Tracking Methods

Chapter 7: Agile and Program Monitoring and
Control

Page 173 GAO-24-105506 Agile Assessment Guide

For Agile development programs, it might be appropriate to project a “cut
off” point. This point, based on the current budget and schedule, details
which features can be accomplished. Figure 15 shows that this project
will be able to accomplish releases 1 and 2, but not release 3 based on
available funding. It is a best practice, though, to ensure the customer
and product owner are communicating on priorities and the balance
between scope, schedule, and budget so that minimum viable product
functionality requirements are met.

Although Agile development differs from Waterfall development with
respect to its treatment of requirements, conventional performance
management tools, such as those for EVM, should still be applied to Agile
programs. Arguments to the contrary are made because Agile
development programs have structures and processes that are dynamic
and iterative and spread planning activities throughout the program
duration, whereas traditional methods perform extensive upfront planning.
However, EVM can be a valuable performance management tool that
decision makers can use to see how the program is progressing
compared to its initial plan. The following areas should be examined for
Agile development programs when using EVM:

• Tracking work breakdown structure detail
• Measuring earned value
• Calculating variances
• Controlling baseline changes

The following narrative discusses these issues and the application of
traditional EVM concepts to an Agile development program.

One of the major concerns with applying EVM to Agile development
programs is the level of detail tracked in the WBS. As previously
discussed, experts recommend that the WBS used for EVM, like the one
for the integrated master schedule, should track Agile data at the feature
or epic levels. Given the dynamic nature of Agile, tracking at too low a
level may not yield valuable data because of the frequent changes made.
However, the Agile data at the iteration level (e.g., the prioritized backlog)
should be available for use as quantifiable backup data for the work
tracked in the EVM system. 98 Figure 16 shows a hierarchy of Agile

98Quantifiable backup data are information used to gauge the progress of a capability
based on the technical completion of each feature, which, in turn, is based on the
accomplishment of the feature’s acceptance criteria.

Considerations for applying
earned value management to
an Agile program

Tracking work breakdown
structure detail

Chapter 7: Agile and Program Monitoring and
Control

Page 174 GAO-24-105506 Agile Assessment Guide

products, time boxed elements, the relationships among them, their
relationship to the EVM system, and the different levels where EVM data
are tracked along with where Agile metrics can be used to provide
quantifiable backup data.

Figure 16: Comparison of Traditional and Agile EVM Products

Other structures mapping EVM to Agile relationships can be developed,
but should be documented so that decision makers can easily observe
what the data collected means in relationship to the work to be
performed.

Measuring earned value

Chapter 7: Agile and Program Monitoring and
Control

Page 175 GAO-24-105506 Agile Assessment Guide

One way to establish EVM measures is to use the percent complete99
method at the feature level. For example, at the feature level, percent
complete is calculated based on the number of associated user stories
that have been completed and some measure of the user story’s weight,
using the 0/100 method100 to determine if a user story has been
completed. On completion, the full credit is taken for the user story. This
measure can be based on the number of story points. Figure 17 illustrates
this method of measuring earned value at the feature level.

Figure 17: Example of Measuring Earned Value for an Agile Feature

In this example, the feature contains user stories with a combined 16
story points. When the first user story is complete, the feature is 31
percent complete because five of the total 16 story points within the
feature have been completed.

99In the percent complete method, performance is equal to the percent a task is complete.
Percent complete should be based on underlying quantifiable measures as much as
possible and be measured by the status of the resource-loaded schedule.

100In the 0/100 method, no performance is taken until a task has been finished. This aligns
with the Agile concept of user stories; only user stories that are 100% complete are
counted at the end of each iteration.

Chapter 7: Agile and Program Monitoring and
Control

Page 176 GAO-24-105506 Agile Assessment Guide

Since lower-level Agile requirements (captured in the prioritized backlog)
are updated frequently, calculating variances between completed work
and planned work can be difficult. However, every program (including
Agile programs) needs a method to measure performance. Meaningful
variances require measuring performance against a baseline. When the
WBS is established at the feature level, the variance would be calculated
as follows:

• If a feature is planned to be completed in 100 hours, but it takes 200
hours to complete it, then the cost variance for that feature would be -
100 hours.

• If the feature is planned to require 100 hours to complete and occur
over three iterations, but only 50 hours of value is earned after three
iterations, then the schedule variance for that feature is –50 hours.

Case study 19: Earned Value Management data provides limited
visibility, from F-35 Joint Strike Fighter, GAO-23-106047

In May 2023, GAO reported that the cost estimation mechanisms for the F-35 Block 4
Modernization Program have not provided visibility into the relative modernization cost
growth versus new capabilities. These mechanisms included the Block 4 Cost
Estimate, the Block 4 report to Congress, and their Earned Value Management (EVM)
reporting. GAO reviewed Block 4 EVM reporting; which is used to track Block 4 cost
and schedule performance on the contract. To develop Block 4, the Department of
Defense is using a different approach called continuous capability development and
delivery (C2D2), which is loosely based on the Agile software development process.
GAO found that the program’s EVM system generally followed best practices but had a
significant limitation—that is, frequent baseline changes due to the inclusion of new
scope made the program’s EVM data difficult to interpret. This decreased the
effectiveness of EVM because the program is measuring cost and schedule against a
continuously changing target, instead of against a static baseline. As a result, the
program’s Block 4 EVM data provided a less meaningful basis for documenting,
reviewing, or explaining cost variances during Block 4 capability development.

The F-35 Program has a baseline control process that provided a disciplined control
process to preserve the integrity of the Performance Measurement Baseline (PMB),
and the PMB is updated to reflect changes. However, GAO found that large increases
to the PMB and frequent baseline plan changes made the data difficult to interpret. For
example, from June 2021 to May 2022, the PMB for Block 4 development grew by 56%
from $2.49 billion to $3.88 billion and the scheduled completion date was delayed by 2
years. This increase in scope, along with a stop work order that occurred at around the
same time, resulted in significant baseline volatility and distorted the reported EVM
metrics. As a result, it became more difficult to forecast program outcomes.

Without adequate visibility into modernization cost growth over time in a program with
regularly changing content, the amount of cost growth attributable to development of

Calculating variances

https://www.gao.gov/products/GAO-23-106047

Chapter 7: Agile and Program Monitoring and
Control

Page 177 GAO-24-105506 Agile Assessment Guide

the original capabilities versus due to added capabilities is not clear. As a result, none
of the program’s cost estimating reporting tools, including EVM, were able to properly
assess and explain cost variances for a defined group of modernization capabilities.

GAO, F-35 Joint Strike Fighter: More Actions Needed to Explain Cost Growth and
Support Engine Modernization Decision, GAO-23-106047 (Washington, D.C.: May 30,
2023).

Source: GAO. I GAO-24-105506

A similar concern is calculating the program’s estimate-at-complete. In
general terms, an estimate-at-complete is computed as follows, where the
completed work represents the actual costs to date and the remaining
work is the budgeted cost of the remaining work.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

The efficiency index is based on program performance to date. For Agile
programs, we can present the estimate at complete equation by replacing
cost and work with effort:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

For a feature, effort could be measured in story points and the efficiency
index calculated as the ratio of total hours expended to total story points
for completed iterations for that feature. Estimated total effort for larger
elements, such as epics, could be calculated similarly, using story points
and hours expended; however, this requires the estimation of story points
to be consistent across the features that make up the epic. If different
teams have different story point estimation schemes, then the estimate-
at-complete will not be as accurate. In that case, it may be preferable to
use feature-level data to calculate estimated total effort for the epic that
comprises those features. A program level estimate-at-complete could be
composed of the sum of epic-level estimates at completion. Alternatively,
the program-level estimate-at-complete could also be calculated as
follows, where the velocity is the completed weighted user story value
across the program’s development teams divided by the total length of
iterations completed to date.

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

https://www.gao.gov/products/GAO-23-106047

Chapter 7: Agile and Program Monitoring and
Control

Page 178 GAO-24-105506 Agile Assessment Guide

The remaining effort is the work remaining in the prioritized backlog and is
measured in story points. This formulation assumes that the development
teams have attained a stable velocity that will remain consistent through
the end of the program. These estimated effort equations can be easily
converted to estimated costs by replacing the completed effort with actual
costs to date and replacing the remaining effort with the budgeted costs
for the remaining backlog. That is, multiplying the effort hours by the
average labor rate will convert effort to cost.

As mentioned previously, in order to have the ability to measure program
performance, there must be a baseline to measure against. Accordingly,
a process should be established to manage baseline changes. The goal
of this process is to preserve the integrity of the performance baseline
and to ensure it reflects the most current plan so that credible
performance measurement can occur. This process creates reliable data
for management to rely on for making program decisions. Initially, it may
seem that a formal change process interferes with the flexibility of an
Agile program to reprioritize the backlog from iteration to iteration.
However, a properly designed change process will not restrict the Agile
process while also maintaining a credible baseline.

The following are three examples of possible baseline changes.101

• If a feature is moved to a future release because it is determined to be
unnecessary for the current release, and work has not begun, then
the associated baseline change action would be to re-plan the feature
into the future release and the associated user stories would be
returned to the backlog. If the baseline start of the feature is within the
“freeze period,” then appropriate control mechanisms should apply, in
order to ensure stability for accurate performance measurement.102

• If a feature is worked on during the current release, but not finished,
then the unfinished user stories are moved to the next release. In
most cases, this move does not constitute a baseline change;

101Derived from the National Defense Industrial Association’s Integrated Program
Management Division, An Industry Practice Guide for Agile on Earned Value Management
Programs, (Arlington, VA: December 9, 2022).

102See discussion of freeze period in National Defense Industrial Association’s Integrated
Program Management Division, An Industry Practice Guide for Agile on Earned Value
Management Programs, (Arlington, VA: December 9, 2022) 34-35, and importance of
PMB stability during that period in Department of Defense OUSD A&S (AE/AAP),
Department of Defense Earned Value Management System Interpretation Guide
(EVMSIG), (March 14, 2019), 67-68.

Controlling baseline changes

Chapter 7: Agile and Program Monitoring and
Control

Page 179 GAO-24-105506 Agile Assessment Guide

however, failure to finish the feature within the planned release will
create a schedule variance and could possibly create a cost variance.

• If a feature is worked on during the current release, but the product
owner removes scope from the feature or associated epic, this will
necessitate a baseline change. The feature should be finished with
the reduced scope and any budget associated with the eliminated
scope should be removed from that feature and reassigned.

Detailed best practice checklists for cost estimating, earned value
management, and scheduling are found in the companion guides; the
GAO Cost Estimating and Assessment Guide (GAO-20-195G) and the
GAO Schedule Assessment Guide (GAO-16-89G).

Best Practices
Checklist: Agile and
Program Monitoring
and Control

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Agile Metrics
Chapter 8

Chapter 8: Agile Metrics

Page 181 GAO-24-105506 Agile Assessment Guide

GAO has consistently emphasized the need for organizations to collect
and use data about program performance to help inform and measure
organization operations and results.103 Performance information can be
measured at various stages of software development and at different
levels of an organization. Such information can be used to, among other
things, identify problems and take corrective actions, develop strategies
and allocate resources, recognize and reward performance, and identify
and share effective approaches. Accordingly, regardless of their preferred
Agile development framework, organizations and programs should
establish an appropriate set of metrics and associated processes to use
to measure their performance goals early in the development cycle. In
keeping with the Agile Manifesto, Agile metrics should be geared toward
measuring outcomes and meeting customer needs.

Organizations can use the following best practices to help them develop
meaningful metrics:104

• Identify key metrics based on the program’s Agile framework.
• Ensure metrics align with and prioritize organization-wide goals and

objectives.
• Establish and validate metrics early and align with incentives.
• Establish management commitment.
• Commit to data-driven decision making.
• Communicate performance information frequently and efficiently.

Figure 18 shows an overview of these best practices to develop
meaningful metrics and table 16 following the figure summarizes the best
practices.

.103For example, see GAO, Managing for Results: Government-wide Actions Needed to
Improve Agencies’ Use of Performance Information in Decision Making, GAO-18-609SP
(Washington, D.C.; Sept. 5, 2018); Managing for Results: Further Progress Made in
Implementing the GPRA Modernization Act, but Additional Actions Needed to Address
Pressing Governance Challenges, GAO-17-775 (Washington, D.C.: Sept. 29, 2017);
Government Performance: Lessons Learned for the Next Administration on Using
Performance Information to Improve Results, GAO-08-1026T (Washington, D.C.: July 24,
2008); and The Government Performance and Results Act: 1997 Government-wide
Implementation Will be Uneven, GAO/GGD-97-109 (Washington, D.C.: June 2, 1997).

104Programs are unique, as are the needs of organizations where they operate. For these
reasons, organizations are in a position to establish the appropriate thresholds and
guardrails associated with performance metrics.

Chapter 8: Agile Metrics

https://www.gao.gov/products/GAO-18-609SP
https://www.gao.gov/products/GAO-17-775
https://www.gao.gov/products/GAO-08-1026T
https://www.gao.gov/products/GAO/GGD-97-109

Chapter 8: Agile Metrics

Page 182 GAO-24-105506 Agile Assessment Guide

Figure 18: Overview of Agile Metrics Best Practices

Table 16: Summary of Agile Metrics Best Practices

Agile metrics best practice Summary
Identify key metrics based on the program’s Agile
framework

• Metrics should be tailored based on a program’s needs.
• Different metrics are important for technical management, program

management, and Agile methods.
• Metrics should be tailored based on the intended audience.

Ensure metrics align with and prioritize organization-
wide goals and objectives

• Connections between strategic goals and objectives should be traceable
to Agile artifacts such as the road map and backlog.

• Metrics facilitate feedback and communication between internal and
external customers.

Establish and validate metrics early and align with
incentives

• Metrics should motivate desired behaviors and emphasize a greater
focus on results for the team rather than the individual.

• Metrics can be used to measure team performance, product quality and
performance, and the team’s adherence to Agile development best
practices.

Establish management commitment • Management should ensure that the processes for measuring
performance are established, reflect an Agile approach, and are used
consistently over time.

• Management must be committed to balance periodic program-wide
health assessments with monitoring progress made to deploy
capabilities.

Chapter 8: Agile Metrics

Page 183 GAO-24-105506 Agile Assessment Guide

Agile metrics best practice Summary
Commit to data-driven decision-making • Metrics are designed to support specific decisions that need to be made

at different levels of the organization.
• Performance goals should be assessed frequently to match the Agile

development cadence.
• Metrics for performance monitoring should be identified in the contract.
• Metrics should be captured using automated tools, whenever possible.

Communicate performance information frequently and
efficiently

• Agile program management and software development tools are used to
capture and display Agile metrics in real time.

Source: GAO. | GAO-24-105506

Each software development program should select and tailor its metrics
according to the program’s chosen Agile framework. Additionally, different
types of software development will need a tailored approach. For
example, customizing commercial software requires a different approach
than developing custom software for specialized hardware. Metrics
should also be transparent. For example, the program should have a
clearly stated goal or objective with a metric that clearly conveys to the
Agile team what data to gather, and to the customer what the metric
means.

General categories of metrics include:

• Technical management (e.g., testing and integration)
• Program management (e.g., cost, schedule, and performance)
• Agile methods (e.g., collaboration or continuous improvement)

In addition to these general categories of metrics, there are different
metrics for the organization, program, and team levels.

In designing performance metrics, organizations should ensure that the
metrics have the key attributes of success. Specifically, metrics should be
quantifiable, meaningful (e.g. have targets for tracking progress, be
clearly defined, and be linked to organization priorities), repeatable and
consistent, and actionable (e.g. be able to be used to make decisions).
We have previously reported on the importance of ensuring that metrics
reflect these attributes.105 Without meaningful, clear, and actionable

105See, for example, GAO, Information Security: Concerted Effort Needed to Improve
Federal Performance Measures, GAO-09-617. (Washington, D.C.; Sept. 14, 2009).

Identify key metrics
based on the
program’s Agile
framework

https://www.gao.gov/products/GAO-09-617

Chapter 8: Agile Metrics

Page 184 GAO-24-105506 Agile Assessment Guide

metrics, management will not have the information they need to evaluate
program performance.

In addition, Agile developers and managers should tailor metrics to their
intended audience. For example, developers should convey meaningful
information that addresses user concerns specifically. Some metrics may
be powerful measures for the team to evaluate its performance, but they
may not be of interest to the user and do not need to be shared with
them, while others may address specific user questions. If a program is
not aligning metrics with user questions, it may not have the data needed
to evaluate program performance.

Although the set of metrics used to measure program performance can
vary for different programs, metrics such as lead and cycle time are
frequently used for all Agile programs. Lead time measures how long it
takes to move from the identification of a capability or feature to when that
capability or feature is to be released into the production environment.
Cycle time is the time it takes from starting to work on a feature or
capability to getting it into production.

Other frequently used metrics include how often a feature or capability is
delivered and its value. As discussed in chapter 7, the added value a
feature provides to a user can be determined by measuring its specific
benefits or capability, such as increased productivity or capability.
capability, such as increased productivity or capability.

Case study 20: Identify key metrics based on Agile framework,
from Immigration Benefits System, GAO-16-467

In July 2016, GAO reported that the U.S. Citizenship and Immigration Services (USCIS)
Electronic Immigration System (ELIS), the case management component of the
Transformation Program, partially met the key Agile practice of monitoring and
reporting on program performance through the collection of reliable metrics. GAO found
some metrics were reliable and addressed their intended purpose. For example, the
program provided evidence of collecting reliable metrics associated with code quality.
However, other metrics were either unreliable or were not collected. For example, the
program did not monitor internal USCIS user satisfaction with USCIS ELIS. Therefore,
it could not measure the level of satisfaction of adjudicators or others using the system
to facilitate the processing of applications.

GAO reported that USCIS ELIS calculated production defect/incident metrics,
automated code scanning results, code issue counts, and code development metrics to
gauge the quality of code delivered during a sprint. These metrics were included as part
of a monthly status report and used for high-level planning. The results of
measurements associated with these metrics identified underlying challenges the

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 185 GAO-24-105506 Agile Assessment Guide

program was facing with product quality. For example, production metrics showed that
the rate in which issues (e.g., defects, incidents, or bugs) were found exceeded the rate
the issues could be closed. Such metrics may indicate a quality issue somewhere in the
development process; however, the use of the metrics allows the program to identify
such concerns and take steps to address them.

GAO also determined that USCIS ELIS did not measure internal user satisfaction.
Officials from the Quality Assurance Team (USCIS staff responsible for the collection of
program metrics) stated that they monitored issues raised by adjudicators and
adjudicator representatives during program reviews and retrospectives. Further, the
Chief of the Capability Delivery Division stated that the operational test agent obtained
internal user feedback on USCIS ELIS. However, the Chief of the Office of
Transformation Coordination explained that incident management (e.g., reporting
defects or issues by the field and service centers) and operational test agent reports
were not proven to be a useful tool for obtaining internal user feedback. As such, the
Chief stated that the Office of Transformation Coordination was developing a method
for capturing internal user satisfaction. Program officials did not elaborate on the steps
the program was planning to take to collect internal user satisfaction or provide a time
frame for collecting such metrics. As a result, GAO reported that the program limited its
understanding of the value being delivered with each software release by not
establishing metrics to obtain user feedback.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 15, 2016).

Source: GAO. I GAO-24-105506

A cumulative flow diagram (CFD) is an analytical tool that allows teams to
visualize their effort and a program’s progress. The graph is built from
different colored bands representing the different stages of task
development, showing how tasks mature over time and their distribution
along the stages of the process. Ideally, the cumulative flow diagram will
show the bands rising evenly, except for the deployed tasks, which
should be growing taller. Figure 19 contains an example of a cumulative
flow diagram. It shows six phases: backlog (estimated), in progress, in
testing, accepted, ready to deploy, and deployed.

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 186 GAO-24-105506 Agile Assessment Guide

Figure 19: Example of a Cumulative Flow Diagram: Lead Time and Cycle Time

Lead time measures the time required for a feature in the backlog to
move into production. Cycle time reports the time after work starts on a
story before it goes into production. Development teams strive for lead
and cycle times to be short. However, the CFD provides more information
than lead time and cycle time. Figure 20 shows how a CFD can be used
to determine potential bottlenecks or issues with capacity.

Chapter 8: Agile Metrics

Page 187 GAO-24-105506 Agile Assessment Guide

Figure 20: Example of a Cumulative Flow Diagram: Band Width

Changes in the height of different portions of the CFD provide an
indication of how the effort is progressing with time. Each band
corresponds to a different stage of development from backlog through
deployment. As shown in Figure 20, bands can narrow or widen over
time. A narrowing band represents a decrease in the number of user
stories in that stage of development and indicates that the work items
leaving the step exceeds the work items entering. In contrast, a widening
band represents an increase in the number of user stories in that stage of
development and indicates that the work items entering the step exceeds
the number of work items leaving.

Chapter 8: Agile Metrics

Page 188 GAO-24-105506 Agile Assessment Guide

Aligning program metrics with organization-wide goals and objectives
reinforces the connection between long-term strategic goals and day-to-
day activities. As we discussed in chapter 3, organizations that have
successfully adopted performance metrics ensured that those metrics
were tied to program goals and demonstrated the degree to which the
desired results were achieved. They also limited the metrics to those that
were considered essential for decision making, covered multiple priorities,
and provided useful information for decision-makers.106 In an Agile
framework, these connections should be traced from the road map
through releases and items in the prioritized backlog, such as in the epics
and user stories. If the metrics do not allow traceability from the road map
through the releases and prioritized backlog, the organization may not
have the right information to make decisions about prioritization and
potential re-planning.

An organization should also define and organize the goals, objectives,
and performance information that are appropriate to the managerial
responsibilities and controls at each level of the organization. An
organized structure will increase the usefulness of performance
information collected by decision makers at each level by helping to
ensure that metrics are aligned with management goals. If the
organization does not adopt an organized structure to collect performance
information at each level of the organization, the metrics may not align
with management goals. Further, this alignment will reinforce the
connection between strategic goals and the day-to-day activities of the
development team. In addition to providing insights to the development
team, Agile metrics can be tailored to convey the developers’ progress
and achievements to internal and external customers. This can facilitate
feedback and communication between both entities.

Finally, an organization should also draw a clear distinction between
product performance and development team performance. Development
team performance measures the team’s ability to deliver the product and
achieve performance goals. For example, development team
performance metrics consider the ability to take on a set number of
contract actions, to deploy an agreed-upon number of capabilities, or to

106GAO, Managing for Results: Enhancing Agency Use of Performance Information for
Management Decision Making, GAO-05-927 (Washington, D.C.: Sept. 9, 2005);
Information Security: Concerted Effort Needed to Improve Federal Performance
Measures, GAO-09-617 (Washington, D.C.: Sept. 14, 2009); and Managing for Results:
Government-wide Actions Needed to Improve Agencies’ Use of Performance Information
in Decision Making, GAO-18-609SP (Washington, D.C.: Sept. 5, 2018).

Ensure metrics align
with organization-
wide goals and
objectives

https://www.gao.gov/products/GAO-05-927
https://www.gao.gov/products/GAO-09-617
https://www.gao.gov/products/GAO-18-609SP

Chapter 8: Agile Metrics

Page 189 GAO-24-105506 Agile Assessment Guide

transition a given number of capabilities within a set span of time. In
contrast, product performance measures product effectiveness and
security-related parameters such as metrics that measure code quality or
user satisfaction.

As discussed in chapter 6, performance standards establish the expected
accomplishment level required by the government to meet the contract
requirements. If performance standards are not measurable and
structured to enable performance assessments, the government may not
be able to assess the expected accomplishments. Further, as we
discussed in in chapter 7, performance management serves to identify
cost and schedule variances from the overall baseline plan so that
program risks can be quickly discerned, tracked, and managed. For
example, this analysis could consider performance productivity metrics for
deployed releases. Together, the achievement of technical or product
performance and development team performance contribute to the overall
success of a program and its ability to deliver the right product at the right
time.

Early in the process, the Agile team should establish and validate the
appropriate metrics to ensure that those metrics are in place to monitor
and evaluate the team from the start of the program. These metrics
should be aligned with incentives for the team and be monitored at the
organization, program, and team levels. Incentives will help ensure that
the teams are appropriately rewarded for achieving the desired goals.107 If
metrics are not aligned with incentives, then the teams may not feel
appropriately rewarded for achieving program goals.

Having incentives is particularly important in an Agile environment, as
reward and incentive structures are based on team, rather than individual,
accomplishments. At the same time, the Agile team should make sure
that the informative value delivered by each metric exceeds the effort to
collect the data, because if the effort to collect data to support a metric is
too extensive, the metric may not deliver enough value to justify its
collection.

107As mentioned in chapter 3, incentives may differ between government and contractor
staff due to contract requirements and the different forms of recognition available.

Establish and validate
metrics early and
align with incentives

Chapter 8: Agile Metrics

Page 190 GAO-24-105506 Agile Assessment Guide

In addition to Waterfall development metrics, various Agile frameworks
are associated with metrics that can help determine the status of software
development efforts at the team level. Examples of these metrics include:

• velocity (volume of work accomplished in a specific period of time by a
given team)

• features or user stories delivered108

• number of defects or bugs
• cumulative flow
• customer and user satisfaction
• time required for full regression test
• time required to restore service after outage

For example, velocity is a metric that quantifies the work developers can
deliver in each iteration. Velocity is reported in story points and can be
captured using a type of chart called a burn up or burn down chart. A
team can use historical velocity data from a previous iteration as it plans
future work. However, this metric is specific to a team and cannot be used
for comparison across teams. Other effective measures of team
performance are the number of user stories completed in an iteration and
whether any were carried over to the next iteration. Some metrics
measure the flow of work over time through the use of cumulative flow
diagrams or by reporting the number of features or capabilities delivered
in each iteration or release. Other metrics are associated with product
quality and performance. An example of a metric associated with product
quality is the number of defects identified after deploying a product into
the production environment. Various tests at different development stages
also help ensure a quality product. A program may also capture metrics
that measure a team’s adherence to Agile software development best
practices. Some of these metrics are described in chapter 6, which
discusses the execution of contractual obligations.

108A further elaboration of this metric may consider user stories or story points committed
versus user stories or story points accepted.

Combinations of Metrics
Agile teams should avoid optimizing a
single metric, such as velocity, at the
expense of other considerations, such as
quality. Combinations of Agile metrics that
counterbalance one another can give Agile
teams a more complete picture of a
program’s progress and identify areas for
improvement. The following are three
examples that can be used:
1.The number of user stories carried over
to the next iteration in conjunction with the
number of defects identified after
deployment may indicate whether a team
is rushing to complete work too quickly or if
that team is spending too much time
reviewing finished work.
2.The number of automated unit tests, as
well as the automated build execution time
can ensure that the addition of new
automated tests does not lead to undue
delays in automated builds.
3.In addition to measuring velocity—the
number of story points delivered—the
number of user stories that are rejected,
have a large number of defects, are not
finished, or have not been started as
planned during the iteration can be
measured. This combination of metrics
discourages the team from raising velocity
by cherry picking easy user stories at the
expense of leaving many stories
abandoned or unfinished.
Agile teams should strive to improve over
time, and it is natural that occasionally
Agile teams will not complete all user
stories assigned to an iteration. However,
consistent and chronic failure to deliver
value in each iteration backlog can indicate
problems, as over estimating work
demonstrates a lack of insight into a
team’s ability. Balanced metrics can help
teams achieve desired performance while
also looking at the success of the program.
Source: GAO | GAO-24-105506

Chapter 8: Agile Metrics

Page 191 GAO-24-105506 Agile Assessment Guide

Agile in Action 7: Health assessments

In 2014, GAO met with a consulting company that offers tools and coaching to Agile
programs to discuss the tools for continuous measurement and growth used to provide
companies visibility into the performance and health of their program teams, product
lines, and portfolios. According to those interviewed, the tools help evaluate maturity,
performance, and delivery of outcomes on an individual, team, program, or organization
level. One way to collect and review these data is through a “health radar.” Each radar
provides a comprehensive picture of a program and team over time and can indicate
whether an Agile implementation is progressing as planned. Documentation provided
shows that the radars are shaped like a wheel and delineate metrics into three levels:
key areas are labeled on the outer most edge, then divided into drivers in the second
level, and each driver is then divided into success metrics. For example, one driver may
be “manage changing business priorities,” with the following associated metrics:
existence of single backlogs to manage work for each portfolio/program/team; business
customer engagement and ownership of managing their backlog ranking; and
continuous backlog refinement processes that manage the addition, removal, re-
ranking, slicing, or renaming of user stories. Each metric is associated with a set of
questions based on a maturity scale to be answered by Agile team members. The
company said that the assessment is typically performed at a release retrospective,
perhaps once a quarter.

After the retrospective, teams can use the team health assessment to review their
strengths, improvements, and impediments and then build a growth plan with the most
important areas they want to improve in the next quarter. This tool that can be used to
provide Agile programs a consistent way to measure the health and performance of
teams, product lines, and portfolios, and a holistic view of how the program is
performing.

Source: GAO. I GAO-24-105506

The commitment of an organization’s managers to establishing effective
performance metrics and using performance information to inform
decisions is critical to program success. Management should ensure that
the processes for measuring performance are established and used
consistently over time, including establishing procedures, monitoring the
establishment and use of performance metrics, and taking the necessary
corrective actions. Management should also perform health assessments
to ensure that adequate resources, including people, funding, and tools,
are provided so performance management and evaluation activities can
be implemented appropriately at various levels. Management can also
issue guidance or procedures for programs using Agile frameworks.
Guidance or procedures can include the metrics used to evaluate the
program and help ensure that the necessary tools are in place to support
automation and Agile program management and reporting.

Establish
management
commitment

Chapter 8: Agile Metrics

Page 192 GAO-24-105506 Agile Assessment Guide

As discussed in chapter 3, management commitment to using
performance metrics is critical when adopting and using performance
information for program decisions and evaluation. Managers
demonstrating their willingness and ability to make decisions and manage
programs on the basis of results and inspiring others to embrace such a
model are important indicators of management commitment. For
example, if management determines that a program is not achieving its
intended results in a timely manner, management should take steps to
identify changes that will help the program better achieve its intended
results. If management does not demonstrate a commitment to use
performance metrics, others may not embrace metrics as useful.

At an organization level, programs should tailor metrics to ensure that
they meet organization needs while also limiting unnecessary work on the
part of the program. For example, organizations might consider calling for
programs to establish a dashboard that can provide management with
real-time updates on a program’s progress and success. Regardless of
the tailored set of metrics used by a program, organization management
needs to have information to hold an Agile program accountable. If forced
to report Waterfall development-based metrics, such reporting will not
only impede Agile adoption and execution, but also will not provide
accurate insight into the software development process.

One way management can show its commitment to balancing periodic
program-wide is health assessments with monitoring the progress made
in deploying capabilities during each release. Agile cadence enables
frequent, regular performance review meetings to discuss progress made
toward achieving the desired results. Staff from different levels of the
organization should be involved in performance review meetings to
assess a program’s progress and results and to discuss any issues or
concerns raised. Involving staff from different levels helps to ensure that
decisions can be made efficiently with a view toward course correction if
necessary. To achieve this, the feedback loop needs to be short.

Chapter 8: Agile Metrics

Page 193 GAO-24-105506 Agile Assessment Guide

Case study 21: Frequent performance reviews, from TSA
Modernization, GAO-18-46

In 2017, GAO reported that the Transportation Security Administration’s (TSA)
Technology Infrastructure Modernization (TIM) program management office conducted
frequent and regular performance reviews. Specifically, program management officials
monitored TIM’s performance and progress during weekly program status review
meetings and in periodic Agile reviews that were conducted at the end of each release.
The program used an automated tool to track and maintain a complete list of all
corrective actions that had been identified and monitored these actions during weekly
program status reviews. The periodic Agile reviews included officials from the
development teams and program stakeholders. The reviews focused on, among other
things, velocity, progress, and product quality. They also included the status of key
activities and risks impacting cost, schedule, and performance. TSA had documented
processes for the program’s Agile milestone reviews, such as conducting workshops at
the end of the release cycle to perform a system demonstration, reviewing qualitative
metrics, and promoting continuous quality improvement.

However, GAO reported that while the program management office used performance
metrics, the program had not established thresholds or targets for acceptable
performance levels for these metrics. Program officials said that they planned to
develop targets based on the capacity of work that development teams are expected to
complete in a release, but the program had developed three releases and continued to
lack performance thresholds and targets. GAO reported that until program officials
established performance thresholds and targets, oversight bodies may lack important
information to ensure the program is meeting acceptable performance levels.

GAO, TSA Modernization: Use of Sound Program Management and Oversight
Practices is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington,
D.C.: October 17, 2017).

Source: GAO. I GAO-24-105506

As discussed in chapter 3, an organization realizes the benefits of
collecting performance information when management commits to using
the information to make decisions aimed at improving results. Since the
success of an Agile software development program is measured in the
value delivered to the customer, metrics should be designed to support
specific decisions that need to be made at different levels of the
organization. There are many dimensions of the software development
program that inform how valuable the software is to the customer and
how efficiently the work is being completed. Decision makers, developers,
and customers need to have insight into the people, processes,
technology, quality, cost, schedule, and performance of the program to
determine the value the program is delivering, as discussed in chapter 7.
The actual metrics used to evaluate performance depend on the specific
circumstances of the program, such as the type of development, the

Commit to data-
driven decision-
making

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-18-46

Chapter 8: Agile Metrics

Page 194 GAO-24-105506 Agile Assessment Guide

maturity of its Agile adoption, the program team, and the size and
complexity of the program.

Frequent assessment of performance goals across different program
dimensions allows management to determine whether Agile development
activities contribute to organization goals as planned. Furthermore, these
metrics reviews should match the cadence of the development process in
order to provide timely feedback or take the necessary corrective actions.
To help guide such reviews, organization or program management should
establish target values for critical metrics. For example, a program should
have established expectations for how long it should take from the time of
program launch to its deployment of minimum viable product (or base
functionality). Similar target values should have been established for
deploying high-priority functionality to production and fixing software bugs
found in production.

Product quality and customer satisfaction should be monitored throughout
the development life cycle. Assuming that there is frequent interaction
with users, changing priorities should be monitored as well. If the metric
review schedule does not match the cadence of the development
process, then management may not be able to provide timely feedback to
take the necessary corrective actions in order to maximize the value of
delivered software.

Chapter 8: Agile Metrics

Page 195 GAO-24-105506 Agile Assessment Guide

As discussed in chapter 6, contractors may conduct the software
development work for the federal government. With regard to monitoring
contractors’ performance, the requirements captured in the contract will
form the basis for performance monitoring. Examples of metrics could
include software size, development effort, schedule, requirements
definition and stability, staffing, progress, computer resource utilization,
and number of working capabilities deployed and in operation. Contracts
should be flexible for implementation and, at the same time, provide
meaningful information to decision makers. If contracts do not capture the
requirements to align with Agile processes, decision makers may not
have the meaningful information they need to manage development.

With respect to overall program performance, a program may rely on
earned value management (EVM) reporting, generally applied to
conventional development efforts to gain insight into the costs associated
with delaying work or missing a milestone. More details on applying EVM
to Agile programs are provided in chapter 7. Additionally, a program may
estimate the cost of technical debt, time, and effort necessary to repay
the debt. The program may also measure and monitor the frequency of
releases as well as product delivery and progress. EVM has been used
successfully to monitor progress in a variety of environments, however,
Agile practitioners may prefer to rely on other metrics. Notably, teams rely
on burn up and burn down charts to communicate progress during
iterations, and the backlog across iterations and within releases to track
and measure value. As mentioned in chapter 7, a work breakdown
structure tied to a program’s Agile structure can help implement EVM
reporting and ensure the program collects metrics to measure overall
program performance. Without collecting metrics for overall program
performance, organizations will not have a good understanding of the
cost and time required to achieve a valuable product.

Metrics should be captured, to the greatest extent possible, by automated
tools already in use by a program, such as Agile program management
suites, version control systems, testing, or continuous integration
pipelines. Programs should use automated tools, as they capture a
variety of metrics that can be a starting point before additional resources
are committed to developing other metrics. Automated tools and the
availability of data may also enable programs to use advanced analytics
to determine their status. The data collected should be evaluated for its
completeness, comprehensiveness, and correctness to ensure that it is
suitable for its intended purpose. Otherwise, data can mislead decision
makers instead of accurately informing them about the program’s status.

Value
Tracking and assessing value in Agile
programs reflects an assortment of process
and product metrics. Because value depends
on different perspectives, such as context,
time, and technology, metrics used to
measure value may evolve with time. For
example, Agile process metrics measure
process performance, or how well planning,
execution, and delivery activities are
performing. These metrics can reveal flow-
related issues such as bottlenecks in the
value delivery process. They can also help
identify areas where improvements have the
greatest impact. Agile product metrics
measure the value that the product delivers in
terms of user acceptance and alignment to
desired outcomes. As a result, some of the
metrics might reflect a combination of
automated data, survey responses, and
communication with the business users to
determine whether the product is delivering
the desired value. With this knowledge the
team can prioritize work on the product
backlog.
Source: GAO analysis of information from DOD, Scrum.org,
and Premiere Agile. | GAO-24-105506\

Chapter 8: Agile Metrics

Page 196 GAO-24-105506 Agile Assessment Guide

Testing is an area where automated tools are critical for providing instant
feedback to developers. Automated testing can support unit and
regression testing, as well as static code analysis. An automated
approach to code testing can reveal defects early in the development
process. Our prior work has emphasized the importance of monitoring
and using data from automated testing to inform program decision-
making.109 An absence of automated testing or an over-reliance on
manual testing can be an indicator of an organization that is still maturing
in the adoption of Agile practices, as discussed in Chapter 3.

Data obtained from automated tools will not be sufficient to inform all
aspects of program performance. For example, data related to team
dynamics and other organizational behaviors will also need to be
captured using tools other than those used in software development.
Accordingly, this data should be augmented with data from other sources,
such as periodic surveys or questionnaires, to provide a complete view.
Without data collected by using both automated tools and other data
collection processes, decision makers may not be able to determine if the
program is delivering its desired value and outcomes.

Agile software development methods employ short delivery time frames
for deploying usable features to the customers. The short time frames
require that progress be tracked daily and be made visible to all
stakeholders at all levels of the organization to enable feedback as
quickly as possible. As previously discussed in chapter 3, the relevance,
reliability, and timeliness of metrics help mitigate Agile adoption and
program execution risks.

Agile program management and software development tools provide
capabilities for capturing and displaying key Agile metrics that can help
enable frequent and efficient communication of performance information.
These tools can greatly facilitate access to and dissemination of
performance metrics. Without tools to facilitate frequent information
dissemination, decision makers may not have access to performance
information and may not be able to take action in a timely manner to
make improvements or corrective actions. Co-located teams can also
display the information using whiteboards or other means of visual
communication that do not rely on software tools. These “information
radiators”—highly visible and easily accessible physical or electronic

109Because Agile operates differently from previous approaches, earned value
management applied to Agile programs leverages different artifacts to measure progress.
These are discussed in more detail in chapter 7.

Communicate
performance
information frequently
and efficiently

Chapter 8: Agile Metrics

Page 197 GAO-24-105506 Agile Assessment Guide

displays of information—can improve communication of performance
information among staff and stakeholders. Such improvements in
information dissemination can facilitate better use of performance
information.

Frequently reporting performance information allows decision makers to
take action in a timely manner to make improvements or corrective
actions. For example, providing frequent data on the number of defects
found versus the number of defects addressed can help identify and
address issues that may be rooted in architectural or code-based
decisions. However, while performance information should be reported
frequently, it should also be reliable and traceable back to requirements
so that decision makers are aware of its value. Miscommunicating
performance information prevents staff and stakeholders from making
necessary improvements or corrective actions in a timely manner can,
contribute to program execution risks.

Case study 22: Reporting reliable metrics to management, from
Immigration Benefits System, GAO-16-467

In 2016, GAO reported that the U.S. Citizenship and Immigration Services (USCIS)
Electronic Immigration System (ELIS), the case management component of the
Transformation Program, lacked traceability between their reporting and planning
metrics, which miscommunicated performance to management. USCIS ELIS was
reporting the scope of each release in the form of sub-features to be delivered within
each release. The program identified the planned number of sub-features to be
developed in each release and updated this number to reflect the actual number of
sub-features developed. Based on review of the backlogs for releases 6.1, 6.2, and 7.1,
GAO found the program had not fully documented if it was delivering the sub-features it
had intended to deliver in each release. The backlogs provided to GAO in 2016
included a field termed “traceability,” which mapped a user story to a supporting sub-
feature or feature. According to this field:

• Six of the nine sub-features were not developed or were not clearly traceable
to the backlog for release 6.1.

• The one sub-feature associated with release 6.2 was not developed or was
not clearly traceable to the backlog.

• Nineteen of the 28 sub-features were not developed or were not clearly
traceable to the backlog for release 7.1.

GAO reported that, in a written response, the Business Integration Division of the Office
of Transformation Coordination recognized issues in traceability of user stories to sub-
features. This division stated that the process that was used to verify the number of
sub-features implemented against the number of sub-features planned was based on
verbal confirmation from the product owner. The division subsequently determined that
this process was not effective since it relied solely on the review of the user stories and

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 198 GAO-24-105506 Agile Assessment Guide

was not as exact and reliable as expected. As a result, the division stated that there
could be sub-features that were reported as implemented by the product owner but that
would not show any associated user stories because they were not directly mapped to
the sub-feature in the software management tool. The lack of traceability between
scope metrics reported by the program and the release backlogs indicates a level of
unreliability in reporting on scope. The continual need for additional effort after delivery
of a sub-feature raises additional concerns regarding the extent to which the program
has effectively forecasted future work in its cost and schedule projections. The division
noted that requirements traceability is critical to avoid scope creep and to demonstrate
that the user stories implemented addressed mission needs.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 15, 2016).

Source: GAO. I GAO-24-105506

Automated tools and dashboards with current information can be used to
provide real-time input into oversight and decision making. Under the right
circumstances, automated dashboards have the potential to help
management view data consistently across programs. For these tools to
be useful, the information displayed must be carefully reviewed. An
example of such a tool is a visible burn up or burn down chart, a tool to
track the progress to the program’s completion. In a burn up chart, the
horizontal axis represents time, while the vertical axis tracks progress
measured in story points. Burn up charts show how past iterations reveal
cumulative story points completed since the beginning of the program. In
combination with the product vision and road map, such information can
inform management decisions about resources and funds by tracking the
progress of the development program.110 A burn up chart can track
progress for releases or iterations. Burn down charts can be used in a
similar fashion to help the team track progress toward requirements. After
analyzing historical data, the team can project minimum, average, and
maximum velocities to estimates when it will complete all the story points.

The following figure provides an example of a burn up and burn down
chart:

110Another Agile tool—the burn down chart—represents the remaining work (on the
vertical axis) over time (on the horizontal axis).

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 199 GAO-24-105506 Agile Assessment Guide

Figure 21: Example Burn Down and Burn Up Charts

Similarly, developers can create dashboards for customers to encourage
feedback so the team can address issues and concerns early. Without
automated tools, management may not have access to data that allows
them to assess all programs consistently and quickly.

1. Identify key metrics based on the program’s Agile framework
• Metrics are tailored based on the program’s needs
• The metrics support their intended use:

• technical management
• program management
• Agile methods

• Metrics are tailored based on the intended audience
2. Ensure metrics align with and prioritize organization-wide goals and

objectives
• Connections between strategic goals and objectives are traceable to

Agile artifacts such as the road map and backlog
• Metrics facilitate feedback and communication between internal and

external customers
3. Establish and validate metrics early and align with incentives
• Metrics should motivate desired behaviors and emphasize a greater

focus on results for the team rather than the individual
• Metrics can be used to measure team performance, product quality

and performance, and the team’s adherence to Agile development
best practices

Best Practices
Checklist: Agile
Metrics

Chapter 8: Agile Metrics

Page 200 GAO-24-105506 Agile Assessment Guide

4. Establish management commitment
• Management has ensured that the processes for measuring

performance are established, reflect an Agile approach, and
consistently used over time

• Management is committed to balance periodic program-wide health
assessments with monitoring progress made to deploy capabilities

5. Commit to data-driven decision-making
• Metrics are designed to support specific decisions that need to be

made at different levels of the organization
• Performance goals are frequently assessed to match the Agile

development cadence
• Metrics for performance monitoring are identified in the contract
• Metrics are captured using automated tools, whenever possible
6. Communicate performance information frequently and efficiently
• Agile program management and software development tools are used

to capture and display Agile metrics in real time

Appendixes

Appendix I: Objective, Scope, and
Methodology

Page 202 GAO-24-105506 Agile Assessment Guide

Our objective was to update the best practices identified for Agile
adoption, execution, and program control and monitoring in the Agile
Assessment Guide Exposure Draft.1 This updated guide of GAO’s
exposure draft provides an overview and background of Agile software
development practices and the challenges faced by federal agencies as
they acquire and manage IT systems, and transition to and manage Agile
software development. In addition, the guide identifies some of the risks
to Agile adoption faced by organizations, programs, or teams and
provides Agile adoption, execution, and control best practices. This guide
is not meant to encompass all aspects of software development or
program management.

To develop the exposure draft of this guide and identify the initial set of
best practices, we reviewed information from a variety of sources related
to Agile adoption, such as industry and government implementation
guides, technical publications, and presentations; and compiled a draft of
leading practices distilled from these different sources.2 We also
consulted extensively with experts in Agile methodologies that we initially
identified by asking our cost and schedule working group members who
had helped us with our cost and schedule guides to identify specialists
with Agile program management expertise. To supplement our list, we
asked these Agile knowledgeable specialists for names of additional
specialists. We also sent letters of inquiry to both the General Services
Administration and the Chief Information Officer’s Council to identify
additional specialists with Agile technical expertise. The group expanded
as we developed the exposure draft through referrals from group
members and inquiries to GAO throughout the course of our audits on
Agile programs.

1GAO, Agile Assessment Guide: Best Practices for Agile Adoption and Implementation,
GAO-20-590G (Washington, D.C.: Sep. 28, 2020).

2See, for example, Booz Allen Hamilton, Agile Playbook, Version 2.0 (Washington, D.C.:
June 2016); California Department of Technology, California Project Management Office,
Understanding Agile, Version 1.0 (California: Dec. 5, 2016); General Services
Administration. De-risking Government Technology: Federal Agency Field Guide
(Washington, D.C.: September 2020); National Association of State Chief Information
Officers and Accenture, Agile IT Delivery: Imperatives for Government Success
(Washington, D.C.: 2017); Office of Management and Budget, U.S. Digital Services,
Playbook (version pulled on Dec. 22, 2017); TechFAR: Handbook for Procuring Digital
Services Using Agile Processes (version pulled on Mar. 8, 2018); Project Management
Institute, Agile Practice Guide (Newtown Square, PA: 2017); Software Engineering
Institute. The Readiness & Fit Analysis: Is Your Organization Ready for Agile? (Pittsburgh,
PA: Apr. 2014). A complete list of references is included at the end of this guide.

Appendix I: Objective, Scope, and
Methodology

https://www.gao.gov/products/GAO-20-590G

Appendix I: Objective, Scope, and
Methodology

Page 203 GAO-24-105506 Agile Assessment Guide

To support the development of the Agile guide exposure draft, the group
of specialists met at GAO headquarters, both in person and via
telephone, three times a year between August 2016 and August 2019.
The meetings were open to all with interest and technical expertise in
Agile (e.g., developers), as well as program managers and organization
executives. Meeting members were from government organizations,
private companies, independent consultant groups, trade industry groups,
and academia from around the world.

Prior to each meeting, we sent an agenda, and received feedback and
discussion on agenda items through in-person discussion, telephone
participants, and email. The meetings provided an open forum for the
knowledgeable specialists and all discussion and opposing views and
were documented and archived. We used knowledge gained from these
discussions and analysis of literature to support the information in this
guide.

After we released the exposure draft to the public, we solicited comments
during the open comment period from September 2020 through
September 2021. We received 327 comments on the guide from the
public, private companies, trade industry groups, and university
researchers, as well as extensive comments from leading practitioners in
government agencies and government working groups. We vetted each
comment we received on whether it was actionable, within scope,
technically correct, and feasible. We accepted or partially accepted 211,
or 65 percent, of the comments we received on the exposure draft. In this
way, we reviewed comments, examined relevant sources identified in the
comments, and made appropriate changes throughout the guide to reflect
these comments. To supplement comments received, we also reviewed
new documents and guidance from government and industry.

Following our review of comments received during the open period, we
updated the exposure draft. In addition, we convened two panels to
review and discuss these updates. We established the composition of the
panels by sending a survey to knowledgeable specialists with a focus on
technical and programmatic aspects of Agile programs.

To ensure that we identified a comprehensive group of subject matter
experts for our two panel discussions during the update of the guide, we
surveyed the 365 knowledgeable specialists who had previously
contributed to the exposure draft. In response to our survey, 90 of them
submitted information about their areas of expertise. From these 90
stakeholders, we selected experts for our panel discussions with the

Appendix I: Objective, Scope, and
Methodology

Page 204 GAO-24-105506 Agile Assessment Guide

objective of identifying those with extensive experience with agile
development from across a wide cross section of agencies and industry.
Specifically, we assembled one panel to discuss technical topics—
including engineering and Agile methods—and another to discuss
programmatic topics—including program management and contracting.
Through this process, we invited 28 experts to participate in one or both
of our panel discussions to update the guide. A list of contributors to this
guide, including these experts, appears in Appendix VIII.

In addition to discussions with Agile experts, as appropriate, we illustrated
the application of Agile by presenting updated case studies and Agile in
Action examples. Some of these case studies and Agile in Action
examples appeared in the exposure draft of this guide, while others are
new case studies and Agile and action examples. We took case studies
from GAO reports and highlighted problems typically associated with a
specific Agile practice. We chose these examples to augment key points
and lessons learned that are discussed in the guide. Agile in Action
examples feature practices adopted by programs and organizations we
interviewed that we believe illustrate Agile key practices executed in an
exemplary or innovative way. We did not base Agile in Action examples
on published GAO reports. Instead, we based them on our research,
interviews, and self-reporting entities. For more information on case
studies and Agile in Action examples, see appendix VII.

We conducted our work from October 2021 to October 2023 in
accordance with all sections of GAO’s Quality Assurance Framework that
are relevant to our objectives. The framework requires that we plan and
perform the engagement to obtain sufficient and appropriate evidence to
meet our stated objectives and to discuss any limitations in our work. We
believe that the information and data obtained, and the analysis
conducted, provide a reasonable basis for the guidance in this product.

Appendix II: Key Terms

Page 205 GAO-24-105506 Agile Assessment Guide

The terms and definitions provided in this appendix are intended for this
guide. These terms can be both contextually and organizationally
dependent. Having a process and terminology in place that are commonly
understood can help to prevent misunderstandings.

Acceptance criteria: These criteria by which a work item (usually a user
story) is judged to be successful or not; either “all or nothing”, it is “done”,
or “not done.” Acceptance criteria are developed to identify when the user
story has been completed and meets the preset standards for quality and
production readiness.

Acceptance testing: Formal testing conducted to determine whether or
not a user story satisfies its acceptance criteria in preparation for the
customer to accept or reject it.

Affinity estimation: A technique used to quickly estimate a large number
of user stories and story points for release planning. It is often used when
a project has just started and has a backlog that has not been estimated
yet. It gives new programs an idea of how to scale user stories and helps
communicate that information to stakeholders.

Agile: An umbrella term for a variety of best practices in software
development. Agile software development supports the practice of shorter
software delivery. Specifically, Agile calls for the delivery of software
requirements in small and manageable predetermined increments based
on an “inspect and adapt” approach where the requirements change
frequently and software is released in increments. More a philosophy than
a methodology, Agile emphasizes early and continuous software delivery,
fast feedback cycles, rhythmic delivery cadence, the use of collaborative
teams, and measuring progress in terms of working software. There are
many specific methodologies that fall under this category, including
Scrum, eXtreme Programming, and Kanban.

Architecture: A set of values and practices that support the active
evolution of the planning, designing, and constructing of a system. The
approach evolves over time, while simultaneously supporting the needs of
current customers.

• Enterprise architecture is the conceptual model of principles and
practices to guide organizations through the structure, operation,
information, process, and technology changes necessary to execute
and achieve their current and future strategies and objectives. These

Appendix II: Key Terms

Appendix II: Key Terms

Page 206 GAO-24-105506 Agile Assessment Guide

practices use the various aspects of an enterprise to identify,
motivate, and achieve the necessary changes.

• Functional architecture is the infrastructure and road map used to fully
address the needs of the system in the present and future.

• System architecture is the conceptual model that defines the
structure, behavior, and views of a system, organized in a way that
supports reasoning for its structures and behaviors.

Backlog: The backlog is a list of features, user stories, and tasks to be
addressed by the team, program, or portfolio and is ordered from the
highest priority to the lowest priority. A backlog includes both functional
and non-functional work, including technical team-generated user stories,
features, or epics. If new requirements or defects are discovered, they are
added to the backlog. A backlog can occur at varying levels. For example,
a product backlog is a high-level backlog that contains all the
requirements for the entire program and an iteration backlog includes a
list of user stories intended for that iteration.

Backlog refinement: The process for keeping the backlog updated by
adding detail and revisiting the order and estimates assigned to work that
teams agree to be necessary. This allows details to emerge as
knowledge increases through feedback and learning cycles. This is also
called “backlog grooming.”

Business manager: A person who uses program management
techniques and Agile principles to deliver business value. This person is
responsible for removing impediments, stimulating empowerment,
collaboration, and communication, and making decisions that ensure a
sustainable pace.

Business sponsor: Owns the business case for a program and is
responsible for the business solution. The sponsor is usually the most
senior person on the program and typically allows the program to
progress without interference; generally only getting involved with
escalated issues.

Burn down chart: A visual tool displaying progress via a simple line
chart representing the remaining work (vertical axis) over time (horizontal
axis). It shows where the team stands regarding completing the tasks that
comprise the backlog items. Related to the burn up chart, except burn
down charts display remaining work instead of work accomplished.

Appendix II: Key Terms

Page 207 GAO-24-105506 Agile Assessment Guide

Burn up chart: A visual tool displaying progress via a simple line chart
representing work accomplished (vertical axis) over time (horizontal axis).
Burn up charts are also typically used at the release and iteration levels.
They are related to the burn down chart except they display accomplished
work instead of remaining work.

Cadence: The rhythm and predictability that a team enjoys by delivering
in consistent time boxes.

Capacity: The quantity of resources available to perform useful work.

Champion: Spreads Agile principles and continually makes adjustments
to Agile practices that suit the environment for successful outcomes. Their
goal is to assist with Agile adoption and transformation, and influence
others regarding the Agile process.

Coding standards: An agreed upon approach for programming style,
practices, and methods. Coding standards keep the code consistent and
comprehensible for the entire team to read and refactor. The concept is
that code that looks the same encourages collective ownership.

Collective code ownership: A software development principle
popularized by eXtreme Programming. Its principle is that all contributors
to a given codebase have access to and are jointly responsible for the
code in its entirety. Collective code ownership, as the name suggests, is
the explicit convention that every team member is not only allowed, but
has a positive duty, to make changes to any code file as necessary: to
complete a development task, to repair a defect, or to improve the code’s
overall structure.

Complexity point: Units of measure used to estimate development work
in terms of complexity but not effort.

Continuous delivery: Continuous delivery is one of the principles of the
Agile Manifesto (see Chapter 1 for a discussion of the Agile Manifesto).
Continuous delivery builds on continuous integration by taking the step of
orchestrating multiple builds, coordinating different levels of automated
testing, and moving the code into a production environment in a process
that is as automated as possible.

Continuous deployment: Continuous deployment builds on continuous
delivery and is a software delivery practice in which the release process is

Appendix II: Key Terms

Page 208 GAO-24-105506 Agile Assessment Guide

fully automated in order to have changes promoted to the production
environment with little or no human intervention.

Continuous integration: Teams practicing continuous integration seek
two objectives: to minimize the duration and effort required by each
integration episode and to be able to deliver at any moment a product
version suitable for release. In practice, this dual objective requires an
integration procedure that is reproducible at the very least, and mostly
automated. This is achieved through version control tools, team policies
and conventions, and tools specifically designed to help achieve
continuous integration.

Could have: Refers to those features that are not critical for the program.
While these features have a higher priority than nice to have features,
they do not need to be delivered as part of the core capabilities. (See
also: should have, must have, and nice to have.)

Cross-functional team: A team that is made up of people who have a
mix skills and ability to define, build, and test ideas into a working product.

Customer: Synonymous with business sponsor because the customer
requires the product or service. The customer may or may not be a user.
The customer is an integral part of the development and has specific
responsibilities depending on the Agile methods used. The customer
wants continuous improvement of products and services.

Daily standup meeting: A brief daily communication and planning forum
where the developers and other relevant stakeholders evaluate the health
and progress of the iteration. Attendees also discuss any impediments to
their planned progress.

Definition of done: A predefined set of criteria that must be met before a
work item is considered complete. This set of criteria serves as a
checklist that is used to check each work item for completeness and used
as the work item’s artifact.

DevOps: An extension of Agile that includes operations and all other
functions that support the application development life cycle to increase
efficiency, consistency, quality, and sustainability. Further, security
becomes an integrated part of the development build that is the
responsibility of the whole team, incorporated into all stages of the
software development workflow under DevSecOps.

Appendix II: Key Terms

Page 209 GAO-24-105506 Agile Assessment Guide

Epic: A large user story that can span an entire release or multiple
releases. An epic is progressively refined into features and then into
smaller user stories that are at the appropriate level for daily work tasks
and are captured in the backlog. It is useful as a placeholder to keep track
of and prioritize larger ideas.

Evolutionary development: The evolutionary strategy develops a
system in builds but differs from the incremental strategy in
acknowledging that the customer need is not fully understood and all
requirements cannot be defined up front. In this strategy, customer needs
and system requirements are partially defined up front, then are refined in
each succeeding build.

eXtreme programming (XP): A software development approach based
on the values of communication, simplicity, feedback, and respect. Some
of XP’s core practices are: test-driven development, refactoring, pair
programming, collective ownership, continuous integration, coding
standards, and sustainable pace. See appendix V for a brief description
of XP and other Agile methods.

Feature: A functional or non-functional distinguishing characteristic of a
system that can be an enhancement to an existing system. Features
include a customer-understandable, customer-valued piece of
functionality that serves as a building block for prioritization, planning,
estimating, and reporting.

Framework: A collection of values, principles, practices, and rules that
form the foundation for development.

Function point: A unit of measure for functional size that looks at the
logical view of the software code accounting for external inputs, external
outputs, external inquiries, external interface files, and internal logical
files.

Integration testing: The phase in software testing in which individual
software modules are combined and tested as a group. It typically occurs
after unit testing and before validation or acceptance testing.
Organizations without continuous integration/continuous development
(CI/CD) need integration testing at the end of iterations, but those with
CI/CD do not.

Appendix II: Key Terms

Page 210 GAO-24-105506 Agile Assessment Guide

Iteration: A predefined, time boxed and recurring period of time in which
working software is created. Instead of relying on extensive planning and
design, an iteration relies on rework informed by customer feedback.

Kanban: A term derived from Japanese roots that translates to “visual
board.” Kanban’s focus is to optimize throughput by visualizing the flow of
work through the process, limiting work in progress, and explicitly
identifying policies for the flow of work. Kanban has distinct differences
from other popular Agile methodologies, primarily the fact that it is not
based on time boxed iterations, but rather allows for continuous
prioritization and delivery of work.

Kanban board: Unlike a task board, the Kanban board is not reset at the
beginning of each iteration. Its columns represent the different processing
states of a unit of value, which is generally (but not necessarily) equated
with a user story. Each column may have an associated work-in-progress
limit. The priority is to clear current work-in-progress, and team members
will “swarm” to help those working on the item blocking the flow of the
work.

Kanban method: An approach to continuous improvement that relies on
visualizing the current system of work scheduling, managing flow as the
primary measure of performance, and whole-system optimization. As a
process improvement approach, it does not prescribe any particular
practices. Agile teams employing a Kanban method may deemphasize
the use of iterations, effort estimates, and velocity as a primary measure
of progress; rely on measures of lead time or cycle time instead of
velocity; and replace the task board with a “Kanban board.” See appendix
V for a brief description of Kanban and other Agile methods.

Minimum viable product: The simplest version of a product that can be
released. A minimally viable product should have enough value that it is
still usable, demonstrates future benefit early on to retain customer buy
in, and provides a feedback loop to help guide future development.

MoSCoW: A prioritization technique used to reach a common
understanding with stakeholders on the importance placed on the delivery
of each requirement, it is also known as MoSCoW prioritization or
MoSCoW analysis. MoSCoW is an acronym for must have features,
should have features, could have features, and will not have features.

Must haves: Those features that are critical for a program; these are the
features that must be delivered as part of the requirements. In addition to

Appendix II: Key Terms

Page 211 GAO-24-105506 Agile Assessment Guide

must have features, there are also should have, could have, and nice to
have features.

Nice to have: Those features that are not critical for the program’s
success. These are the features that are developed if there is enough
time or money to develop them.

Pair programming: Two developers working side-by-side to develop
code and who may frequently switch roles to complete tasks. This method
of programming provides a real-time code review, allowing one developer
to think ahead while the other thinks about the work at hand, and it
supports cross-training. The concept can also be extended to pair
designing and pair unit testing to provide real-time peer reviews. Pair
programming is a fundamental part of XP.

Peer inspections: A form of code review performed by a peer that
occurs after the code is complete to ensure consistency.

Performance work statement: A statement of work for performance-
based acquisitions that describes the required results in clear, specific,
and objective terms with measurable outcomes.

Product: A tangible item produced to create specific value to satisfy a
want or requirement.

Product owner: The person who is accountable for ensuring business
value is delivered by creating customer-centric items (typically user
stories), ordering them, and maintaining them in the backlog. The product
owner defines acceptance criteria for user stories. In Scrum, the product
owner is the sole person/entity responsible for managing the backlog. The
product owner’s duties typically include clearly expressing the backlog
items, prioritizing the backlog items to reflect goals and missions, keeping
the backlog visible to all, optimizing the value of development work,
ensuring that the developers fully understand the backlog items, and
deciding when a feature is “done.” A product owner should be available to
the team within a reasonable time for both decision-making and
empowerment.

Program: The result of a development effort. In the context of this guide,
a program can also be called a project or can refer to multiple projects
managed as one program.

Appendix II: Key Terms

Page 212 GAO-24-105506 Agile Assessment Guide

Quality attribute: A factor that specifies the degree of an attribute that
affects the quality that the system or software must possess, such as
performance, modifiability, or usability.

Refactoring: Refactoring involves modifying code to improve
performance, efficiency, readability, or simplicity without affecting
functionality. It is done after automated regression tests are written to
ensure that existing functionality has not actually been affected with the
modifications. Generally considered part of the normal development
process, refactoring improves software longevity, adaptability, and
maintainability over time.

Regression testing: A type of software testing that verifies that software
that was previously developed and tested still performs correctly after it
was changed or interfaced with other software. These changes may
include software enhancements, patches, configuration changes, etc.
During regression testing, new software bugs or regressions may be
discovered.

Release: A planning segment of requirements (typically captured as
features or user stories in the backlog) that deploys needed capabilities.
The release is a time boxed event that consists of a set number of
iterations that are determined by the program. The release plan is where
different sets of usable functionality or products are scheduled to be
delivered to the customer.

Requirement: A condition or capability needed by a customer to solve a
problem or achieve an objective.

Requirements scrub: See backlog refinement.

Retrospective: A team meeting that occurs at the end of every iteration
to review lessons learned and to discuss how the team can improve the
process and team dynamics. The retrospective is an integral part of Agile
planning and process and product improvement, and typically occurs at
the end of every iteration or release. During each retrospective, the team
explores ways to improve how they communicate, collaborate, problem
solve, and resolve conflict in an effort to improve their own performance.

Road map: A high level plan that outlines a set of releases and the
associated features. The road map is intended to be continuously revised
as the plan evolves. It can also be used in Waterfall development

Appendix II: Key Terms

Page 213 GAO-24-105506 Agile Assessment Guide

programs, but typically a different term should be used. (See related
terms in appendix III.)

Scrum: Scrum is a framework for developing and sustaining complex
products. See appendix V for a brief description of Scrum and other Agile
methods.

Should have: Those features that are not critical for a program and do
not need to be delivered as part of the requirements. However, these
features are higher priority than the could have or nice to have features
and could significantly improve the capability of the program.

Solution: Products, systems, or services delivered to the business
sponsor that provide value and achieve goals. A specific way of satisfying
one or more needs in a context.

Sprint: See iteration.

Stakeholder: Anyone who has an interest in the program. Specifically,
parties that may be affected by a decision made by or about the program,
or that could influence the implementation of the program’s decisions.
Stakeholder engagement is a key part of corporate social responsibility
and for achieving the program’s vision. A group or individual with a
relationship to a program change, a program need, or the solution can be
considered a stakeholder.

Story board: A wall chart (or digital equivalent) with markers (cards,
sticky notes, etc.) used to track user stories’ progress for each iteration.
For example, the board may be divided into “to do,” “in progress,” “done,”
etc., and the movement of the markers across the board indicates a
particular user story’s progress. One goal of the story board may also be
to recognize the order and the dependencies of the user stories in
representing end-to-end functionality for the customer.

Story map: A visual technique to prioritize user stories by creating a
“map” of customers, their activities, and the user stories needed to
implement the required functionality.

Story point: A unit of measure for expressing the overall size of a user
story, feature, or other piece of work in the backlog. The number of story
points associated with a user story represents the complexity of the user
story relative to other user stories in the backlog. There is no set formula
for estimating the size of a user story, rather, a story point estimate is a

Appendix II: Key Terms

Page 214 GAO-24-105506 Agile Assessment Guide

combination of the amount of effort involved in developing the feature, the
complexity of developing it, and the risk inherent in it.

Sustainable pace: A management workload philosophy that is a part of
the XP Agile method. (see app. V for a brief description of the XP
method.) It refers to a manageable, constant workload negotiated
between the team and management so that the team will not be
overextended. Sustainable pace is crucial when using velocity to estimate
how much work a team is able to complete during an iteration.

Team facilitator: A person who has the explicit role of conducting a
meeting and provides indirect or unobtrusive assistance, guidance, and
supervision. Their primary focus is creating a process that helps the
group achieve the intent of the meeting and takes little part in the
discussions on the meeting’s topics.

Technical debt: The obligation that a software organization incurs when
it chooses a design or construction approach that is expedient in the short
term but increases complexity and is more costly in the long term.

Test driven development: A software development process that relies
on the repetition of a very short development cycle with unit testing. For
example, first the developer writes an (initially failing) automated test case
that defines a desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally refactors the new
code to acceptable standards.

Theme: A group of user stories that share a common attribute, and for
convenience they are grouped together and may span programs. A
theme may be broken down into sub-themes, which are more likely to be
product specific. They can be used to drive strategic alignment and
communicate a direction.

Time box: A time box is a previously agreed-upon period of time during
which a person or a team works steadily toward completing a product.
Rather than allow work to continue until the product is completed and
evaluating the time taken, the time box approach consists of stopping
work when the time limit is reached and evaluating what was
accomplished. For example, in Scrum, the daily scrum is a 15-minute
time boxed event. This means that the daily scrum should take up to, but
no longer than, 15 minutes to complete. Time boxed iterations are
typically associated with Scrum and XP.

Appendix II: Key Terms

Page 215 GAO-24-105506 Agile Assessment Guide

Unit testing: Software testing in which individual units of source code,
sets of one or more computer program modules together with associated
control data, usage procedures, and operating procedures are tested to
determine whether they are fit for use. This is the smallest testable
increment in software development.

Usability: Usability refers to the quality of an end user’s experience when
interacting with products and services. Usability is characterized by
effectiveness, efficiency, and the overall satisfaction of the end user.

User: A user is the person or group that makes use of products and
services procured by business sponsors or customers.

User experience: User experience focuses on having a deep
understanding of end users, what they need, what they value, their
abilities, and their limitations. It also takes into account the business goals
and objectives of the business sponsor and customer.

User interface: A user interface is the portion of an interactive computer
system that communicates with the end user.

User story: A high-level requirement definition written in everyday or
business language, it is a communication tool written by or for customers
to guide developers. It can also be written by developers to express non-
functional requirements such as security, performance, or quality. User
stories are not vehicles to capture complex system requirements on their
own. Rather, full system requirements consist of a body of user stories.
User stories are used in all levels of Agile planning and execution. An
individual user story captures the “who,” “what,” and “why” of a
requirement in a simple, concise way, and can be limited in detail by what
can be handwritten on a small paper notecard (also called “story”).

Velocity: Velocity is the amount of work a team can deliver each
iteration, commonly measured as story points accomplished per iteration.
For example, if a team completed 100 story points during an iteration, the
velocity for the team is 100. Velocity is a team-specific abstract metric
and should not be compared across teams as a measure of relative
productivity.

Verification and validation testing: Independent procedures that are
used together for checking whether the program meets the requirements
and specifications and fulfills its intended purpose.

Appendix II: Key Terms

Page 216 GAO-24-105506 Agile Assessment Guide

Vision: The highest level of Agile planning, the purpose for the program
that is strategic in nature. The vision represents a shared understanding
of the mission and objectives, capability gaps, expected behavior, and
final outcomes to be addressed. The vision should be consistent over the
life of the program unless business needs change significantly.

Appendix III: Related Terms

Page 217 GAO-24-105506 Agile Assessment Guide

Agile terms can be specific to an individual program where they were
used; even within the same organization. Prior to an audit, it is imperative
that auditors understand the terms that each program uses. Table 17
highlights the terms that we have chosen to use in this guide and
synonyms that we found in use in Agile development efforts. This list is
not all inclusive, but is intended to be a starting point to help bridge any
misunderstandings caused by using different terms.

Table 17: Terms used in this guide and related terms

Term used in this guide Related terms
Backlog Inventory, feature list
Backlog refinement Backlog grooming, backlog pruning
Daily stand up meeting Daily Scrum
Epic High-level requirement, theme
Feature Capability, requirement
Iteration Sprint
Kanban Enterprise services planning
Minimal viable product Minimally Sufficient Product, Minimal Marketable Feature
Must haves Key Performance Parameters
Program Project
Release Product Increment
Retrospective Lessons learned
Road map Project vision, vision statement, Acquisition Program Baseline,

Integrated Master Plan
Story board Task board, Kanban board, progress board, story map
Team facilitator Scrum master
Theme Related user stories
User story Story, product backlog item
Velocity Capacity

Source: GAO. | GAO-24-105506

Appendix III: Related Terms

Appendix IV: Auditor’s Key Questions and
Effects

Page 218 GAO-24-105506 Agile Assessment Guide

At the beginning of an audit, auditors should collect documentation and
familiarize themselves with organizational, programmatic, and team
specific Agile practices. Once they are familiar with the data collected and
have started analyzing them and comparing conditions to criteria, the
following questions can be used as a starting place when reviewing Agile
practices. They are not intended to represent a comprehensive set of
questions that will be appropriate for every organization, program, or
team. Prior to interviewing or discussing these questions within an
organization, program, or team, we recommend that auditors discuss and
come to a consensus on common terminology. For each best practice,
this appendix also describes potential effects if organizations, programs,
or teams are not fully implementing a best practice.

This chapter considers how teams plan and prioritize their work. It also
examines the role of organization and its use of Agile processes and
methods to encourage close collaboration between the developers and
stakeholders.

Key considerations and questions

1. Agile teams are self-organizing
• What is the team composition? Expertise mix?
• Do team members have cross-functional skills allowing them to

perform all of the work rather than a single specialty?
• Is the team integrated with the program office, and able to enlist

specialists such as designers, contract specialists, etc., as
needed?

• Are teams stable across iterations?
• Is the team provided the latitude to collectively own the whole

product and decide how work will be accomplished?
• What allowances are made to ensure the team has adequate

resources and time to complete the work effectively?
• Are all team roles defined and filled with the appropriate

expertise?
2. The role of the product owner is defined to support Agile methods

• Has a product owner been identified? How many teams is each
product owner responsible for?

Appendix IV: Auditor’s Key Questions and
Effects

Chapter 3: Agile
Adoption Best
Practices

Best practice: Team
composition supports
Agile methods

Appendix IV: Auditor’s Key Questions and
Effects

Page 219 GAO-24-105506 Agile Assessment Guide

• Is the product owner responsible for working with one team or
multiple teams? If multiple, will this impact their availability to each
team?

• Is the product owner empowered with the ability to prioritize work
in the backlog?

• Is the product owner responsible for defining acceptance criteria
and deciding whether those criteria have been met?

• How does the product owner engage stakeholders and the
developers to ensure work priorities align with stakeholder
requirements?

• Is the product owner available to the team when needed? Are
there guidelines about product owner response rates?

• Does the product owner continually interact with the team to
discuss the success of the team throughout the process?

• Is the product owner empowered to approve completed work?

Likely effects if criteria are not fully met

1. If the teams are not self-organizing or self-managing, the teams may
be inefficient, causing program cost increases and schedule slips.

2. If a team does not have the requisite skill sets, it will be reliant on
other teams that may have other responsibilities, thus delaying
progress on the product.

3. Frequently shifting resources within a team, or between teams, can
undo learning and shift team dynamics and skills, thereby diminishing
the team’s ability to meet commitments.

4. If there is not a clearly identified product owner who is the
authoritative customer representative and is responsible for managing
requirements prioritization, communicating operational concepts, and
providing continual feedback, the developers may not be sure which
features are priorities if they receive conflicting information. This
uncertainty can result in delays to delivering high priority features and
deployment of the overall system.

5. If the product owner is not a dedicated resource, the developers may
find that person unavailable to answer questions when needed, and if
questions are not addressed in a timely manner, the developers may
make assumptions in order to continue with development to meet
commitments. If these assumptions do not match the expectations of
the product owner, significant rework may be necessary. This can
slow down the development process.

Appendix IV: Auditor’s Key Questions and
Effects

Page 220 GAO-24-105506 Agile Assessment Guide

6. A product owner must be empowered to prioritize decisions about
development. Without the ability to reprioritize work, the development
process can slow down due to waiting on others with competing
responsibilities to consider and respond on behalf of the business.

7. Without maintaining contact with both the developers and the
customers, a product owner may not be able to represent what the
customer priorities are and may misrepresent them to the developers.
This could result in a decreased value from the system if the wrong
features are given priority in the backlog or cause schedule delays if
critical features were not developed.

Key considerations and questions

1. Agile teams use user stories to define work
• Is there a standard structure used to write user stories? (e.g.,

elements that should be included in a standard user story?)
• Who writes the user stories and how are they managed? Can

anybody write a user story?
• How does the product owner ensure that user stories are

independent? Negotiable? Valuable? Estimable? Small?
Testable?

• How do the user stories reflect acceptance criteria and do they
define what “done” is?

• How and when are user stories reevaluated based on
organizational needs and return on investment?

2. Agile teams estimate the relative complexity of user stories
• How does the team estimate user story complexity? (For example,

what techniques and metrics are used for estimating?)
• Does the team consider potential factors that can increase the

complexity of the work when sizing the work?
• What techniques does the team use, such as affinity estimation, to

help identify the factors that could affect the complexity of a user
story?

• Who is involved in estimating and at what level does estimating
take place?

• Does the size estimation use prior estimates to inform future
estimates?

• Is the size estimate refined over time?

Best practice: Work
is prioritized to
maximize value for
the customer

Appendix IV: Auditor’s Key Questions and
Effects

Page 221 GAO-24-105506 Agile Assessment Guide

• Are acceptance criteria well-defined and consistent for user
stories?

• Does the team ‘lock’ sizing estimates once an iteration begins so
the team can examine variances between estimated and actual
work accomplished?

• Have the teams been meeting their commitments for each
iteration/release?

3. Requirements are prioritized in a backlog based on value
• Is the product owner considering value when prioritizing the

backlog?
• Is there a shared understanding of value among the team,

program, and organization?
• Is the team working from a prioritized backlog to provide frequent

software deliveries?
• What approaches are used to prioritize the backlog: the must-

have, should-have, could-have, would like to have (MoSCoW),
etc.?

• Is the value of the work accomplished tracked and monitored?
• Does the program track feature usage statistics or customer

satisfaction? Is the team assessing value expected versus value
delivered?

• Does the product owner reevaluate requirements frequently to
reprioritize as necessary?

Likely effects if criteria are not fully met

1. Establishing a common structure for the user story helps ensure
consistency and can help prevent delays when product owners work
with multiple teams or teams are reorganized.

2. If teams are not using relative estimation to compare current size and
work estimates to historical completed work, the team may
underestimate or overestimate the complexity and time necessary to
complete the user story.

3. Well-defined acceptance criteria can help teams estimate a user
story’s complexity. Less well-defined user stories will carry more risk
and uncertainty around size estimates.

Appendix IV: Auditor’s Key Questions and
Effects

Page 222 GAO-24-105506 Agile Assessment Guide

4. If teams are not estimating user stories consistently, the teams may
be committing to too much work, leading to user stories lasting more
than one iteration and team burnout.

5. A lack of traceability between different levels of backlogs and program
planning artifacts could lead to overlooking user stories or features
that are critical to the program due to their high value to the customer
or key dependencies that those user stories or features might have
with other aspects of the system.

6. A lack of understanding or insight into the methods used to measure
value for user stories could cause a disconnect between the users
and developers and allow delivery of features that do not maximize
the value.

7. Without clearly prioritizing work, the developers could work on
features that are not “must haves” to the customer, resulting in the
delivery of features that may not be used and might contribute to
schedule and cost overruns.

Key considerations and questions

1. Agile program employs continuous integration
• How frequently is the software integrated?
• How does the team ensure that software handoffs between the

various stages of development and testing are performed in a
reliable, dependable manner?

• Are functional and non-functional requirements tested at each
stage of the continuous integration process?

• Is the scope of the automated testing tracked and monitored
based on established expectations?

2. Mechanisms are in place to ensure the quality of code being
developed
• How does the team incorporate manual coding in concert with

automated processes to manage the code base?
• What mechanisms are in place to alleviate factors that contribute

to negative impacts on code quality, such as time constraints and
unsustainable pace of development, or undisciplined coders?

• What processes are in place to manage “technical debt”?

Best practice:
Repeatable
processes are in
place

Appendix IV: Auditor’s Key Questions and
Effects

Page 223 GAO-24-105506 Agile Assessment Guide

• What assurance methods are incorporated in code development
to ensure the integrity of manual coding, pair programming,
refactoring, and peer review?

3. Agile teams meet daily to review progress and discuss impediments
• Is the team holding a standup meeting every day and if so, who

leads it?
• Who attends the standup meetings?
• Are all members of the team present and actively involved in the

standup meetings?
• What are the objectives of the daily standup and how do they help

the team plan and execute work?
4. Agile teams perform end-iteration demonstrations

• Is the team holding a review/demo at the end of every iteration?
• Who attends the end-iteration demos?
• Do all stakeholders attend the demonstration? For example, does

the product owner(s) attend the demos?
• Is the software depicted in a realistic setting?
• Is the team demonstrating every completed user story at the

demo?
5. Agile teams perform end-iteration retrospectives

• Is the team holding retrospectives at the end of each iteration?
• Who attends the retrospective? Does the product owner attend

the retrospective with the team? Are all members of the team
present and actively participating in the meeting?

• How are action items from the retrospective implemented?
• How are implemented tasks from the retrospective managed?
• What is the average time to fully implement tasks identified in the

retrospective?

Likely effects if criteria are not fully met

1. Without continuous integration using automation, reliable, dependable
software handoffs may not occur.

2. Without automated build and testing tools, the program may
experience challenges in delivering the product on time and may have
a limited assurance of product quality.

Appendix IV: Auditor’s Key Questions and
Effects

Page 224 GAO-24-105506 Agile Assessment Guide

3. The accumulation of deficiencies over time is called “technical debt”
and can present obstacles to an Agile program if not properly
managed. For example, as a code base grows, additional functions
will rely on the deficient code, causing a degradation in overall system
performance. Moreover, as the interest incurred on technical debt
continues to rise, teams will devote more time to cleaning up errors
instead of producing new features.

4. Without the daily standup meetings, team members may not be held
accountable for their work. In addition, duplication of work could
occur, or work may not get accomplished because of a lack of
communication and understanding of who is doing what for the
program.

5. Without daily standup meetings, the team might also not identify
impediments which may result in rework or schedule delays.

6. If used as a status update by management instead of focusing on
progress and impediments, the meetings could last too long.

7. If regular demonstrations are not performed, the team may not be
able to identify portions of the software that need improvement or
modifications to provide the anticipated functionality.

8. If a retrospective is not held at the end of each iteration, the team may
not reflect on or improve the efficiency and effectiveness of its work
processes, thereby impacting the timely delivery of a high-quality
product.

Key considerations and questions

1. Program staff are trained in Agile methods
• Has the program developed a strategic approach that establishes

priorities and leverages investments in training and development
to achieve results?
• Does the program have training goals and related

performance measures that are consistent with its overall
goals and culture?

• How does the program determine the skills and competencies
its workforce needs to achieve current, emerging, and future
goals and identify gaps that training and development
strategies can help address?

• How does the program identify the appropriate level of
investment to provide for training and development efforts and

Best practice: Staff
are appropriately
trained in Agile
methods

Appendix IV: Auditor’s Key Questions and
Effects

Page 225 GAO-24-105506 Agile Assessment Guide

prioritize funding so that the most important training needs are
addressed first?

• What measures does the program use in assessing the
contributions that training and development efforts make
toward individual mastery of learning and achieving program
goals?

• How does the organization incorporate employees’ individual
developmental goals in its planning processes?

• How does the program integrate the need for continuous and
lifelong learning into its planning processes?

• Are all members of the Agile team and all stakeholders in the
program receiving appropriate training?

• Does the training in specific Agile methods include Agile policy
and procedures?

• How does the organization track and monitor training
requirements for all team members?

• Under what circumstances is refresher training conducted, such
as on the use of new programming languages, applications,
compliance requirements, coding, or security standards?

2. Developers and other supporting team members have the appropriate
technical expertise
• How does the program ensure immediate access to specialized

expertise, including contracting, architecture, database
administration, development, quality assurance, operations (if
applicable), information security, risk analysis, and business
systems analysis, that may be required to aid existing teams?

• How did the program identify the technical expertise needed to
successfully meet program goals?

• How did the program assess the existing expertise of Agile team
members?

• How were gaps addressed, if any?
• Does the program define requirements for contractor personnel to

be provided in contractor proposals?
• How is the program evaluating the qualifications of the contractor

to perform the work when evaluating proposals?

Appendix IV: Auditor’s Key Questions and
Effects

Page 226 GAO-24-105506 Agile Assessment Guide

Likely effects if criteria are not fully met

1. Without training, there may be a lack of common understanding in the
program about the Agile methods to be used.

2. Without effective training based on a strategic human capital analysis,
the program will be challenged in helping to ensure that the required
capabilities and mission value will be delivered in a timely and cost-
effective manner.

3. An Agile team needs to have all the appropriate technical expertise, or
it could be delayed in completing its work while waiting on input from
knowledgeable specialists outside of the team.

4. If individual team members are not proficient in the skills necessary to
complete the work, then the quality of the product being developed
may suffer, requiring substantial re-work.

Key considerations and questions

1. System design supports iterative delivery
• How has the program established an architecture that allows for

incremental delivery and loose coupling?
• How does the design architecture support delivery of iterations

that can be seamlessly inserted into the operational environment?
• How does the program manage staff assignments distributed

across multiple locations to facilitate iterative delivery and loosely
coupled architecture?

• How does the program manage frequent testing and reviews to
ensure that newly-developed components are properly integrated
with existing components?

2. Technical and program tools support Agile
• What tools are being used to support Agile software

development?
• Are tools used organization-wide, program-specific, team-specific,

or a combination?
• Do both government and contractor personnel, involved in the

Agile development effort, have access to the same data?
• How is the program working to ensure that both government and

contractor personnel have access to the same data?

Best practice:
Technical
environment enables
Agile development

Appendix IV: Auditor’s Key Questions and
Effects

Page 227 GAO-24-105506 Agile Assessment Guide

• How is the program setting up internal controls to restrict access
rights for Agile-support tools to ensure the proper access across
government and contractor personnel?

• How is program management working to align their program
management tools with Agile principles and practices?

• How frequently is software integrated and tested?
• How are automated tools used to support integration and testing

of software?
• Are the tools integrated into the program’s technology

environment (e.g., automated regression testing suites and
continuous integration support tools) and is access available to all
team members and stakeholders?

Likely effects if criteria are not fully met

1. Not allowing time up front to consider system requirements can
increase future complexity, re-work, and unnecessary investment.

2. If the program does not consider the system architecture during its
initial planning and instead relies on building out the architecture as
code is developed, the architecture may not support the needs of the
system when fully operational and require a complete technical
refresh.

3. If software design and architecture are not loosely coupled, changes
to individual pieces of the system may require a significant amount of
testing of the entire system, slowing the pace of development and
delivery of the product.

4. If technical and program tools are not consistently available to those
members of the team requiring access, then the productivity of
developers may suffer and result in increased costs for development.

5. Large programs not using automated tracking tools could miss key
dependencies between user stories and features.

6. Without automated tools, the program risks inconsistent
implementation of processes across teams, which may negatively
affect product delivery and understanding of the program’s progress.

Appendix IV: Auditor’s Key Questions and
Effects

Page 228 GAO-24-105506 Agile Assessment Guide

Key considerations and questions

1. Critical features are defined and incorporated in development
• Has the program identified mission, architectural, and safety-

critical components and dependencies?
• How often does the program revisit these components to validate

their importance?
• At what point in a program’s life cycle are these components

defined? During an initial iteration before any software
development begins?

• How does the program strategy account for mission and safety
criticality along with dependencies? Is the strategy adequate or is
the program increasing its risk?

• In determining the criticality of software, how does the program
evaluate and prioritize the relative value of work to ensure that
each iteration delivers the most business value?

2. Non-functional requirements are defined and incorporated in
development
• How are non-functional requirements for a program identified?

Where are these requirements defined?
• How does the program consider and implement security

requirements throughout the development?
3. Agile teams maintain a sustainable development pace

• Does management work with teams to prioritize user stories,
establish an agreed upon definition of done, and develop a mutual
commitment on the work to be accomplished for each iteration?

• How does management encourage teams to maintain a consistent
development pace that can be sustained indefinitely?

• Does the program track velocity or other metrics to evaluate
pace?

• How does velocity or sustainable pace factor into iteration and
release planning? Into iteration/release review or retrospective?

• Does the program monitor the teams to ensure a consistent pace
is being achieved on a team-by-team basis? If so, how and how
often?

Best practice:
Program controls are
compatible with Agile

Appendix IV: Auditor’s Key Questions and
Effects

Page 229 GAO-24-105506 Agile Assessment Guide

Likely effects if criteria are not fully met

1. Without clearly identifying mission and system critical architecture
features, the program risks developing these features after other
software is in place and facing substantial rework and integration
challenges, unnecessarily increasing the cost and time to deliver all
critical features.

2. If critical business requirements are not prioritized appropriately,
software may not provide the required functionality.

3. Lack of communication between the product owners, users, and
developers regarding features’ priorities risks the development of
noncritical software in place of critical software and lower customer
satisfaction with the completed product.

4. Teams overlooking nonfunctional requirements may develop a system
that does not comply with current federal standards (e.g.
cybersecurity or interface requirements for IT programs), causing
unnecessary risks to business operations and resulting in the software
not becoming operational until these components have been
addressed.

5. If teams are not working at a sustainable pace, there is a risk of
burnout, which can cause delays in the program.

6. Without establishing a consistent pace, the program cannot reliably
use historical metrics, such as team velocity, to estimate future efforts
required in product development.

Key considerations and questions

1. Organization has established appropriate life cycle activities
• Is there a documented process for acquisition?
• Is there a documented process for software development?
• Are programs allowed to deviate from the documented processes

if pursuing Agile software development? If so, under what
conditions?

• Do organization acquisition policy and guidance allow for
changing requirements?

• Do organization acquisition policy and guidance allow for
frequently delivered software in small deployments?

Best practice:
Organization activities
support Agile
methods

Appendix IV: Auditor’s Key Questions and
Effects

Page 230 GAO-24-105506 Agile Assessment Guide

• Do organization activities support technical reviews occurring
throughout development that are tailored to the cadence of Agile
software development?

• Do the program’s structure and support mechanisms foster a
strong relationship between customers and the developers?

• How is success being measured for Agile programs, including any
benefits such as shortened timeframes and higher quality software
being delivered?

• How is the organization encouraging more frequent collaboration
between the customer and developers and more frequent delivery
of incremental software?

• Has the organization developed policies and procedures allowing
requirements to change throughout the program’s life cycle?

• Early in a program’s life cycle, are requirements defined at a high
enough level that the program can modify the requirements as
needed to reflect a better understanding of needs?

• Has the organization specified policy and procedures regarding
the speed with which changes can be approved?

• Has the organization modified policies and processes to reflect
Agile practices and policies? For example, how are modifications
made to policies and processes, such as systems engineering life
cycle documentation, to address Agile development methods?

2. Goals and objectives are clearly aligned
• Has the organization or component developed a strategic plan for

IT that aligns with the overall objectives of the organization or
component strategic plan?
• Is IT consulted by management to identify technology that is

creating opportunities that the business can turn into
enterprise benefits?

• Are members of IT management actively helping to realize the
enterprise goals?

• Is there accountability for achieving enterprise goals to
determine executive commitment to the goals?

• Have the goals for the program been defined?
• Were program goals approved and agreed to by all relevant

stakeholders in accordance with agency or component acquisition
policy?

Appendix IV: Auditor’s Key Questions and
Effects

Page 231 GAO-24-105506 Agile Assessment Guide

• Do program goals logically trace back to the IT strategic plan and
business strategic plan?

• Do the technical goals of the program (e.g. software and
hardware) align with the organization’s software-related goals?

• Is the organization collecting objective measures and clearly
communicating feature and capability achievements to the entire
organization?

• How does the organization ensure that goals are clear but not
static, and that the Agile implementation allows for rapid response
to changes in either the external or internal environment?

• How does the organization allow for goals that are not clear? How
does the organization effectively and routinely communicate
program goals?

Likely effects if criteria are not fully met
1. If programs are unable to tailor life cycle activities, then the

organization’s oversight process could negatively affect the cadence
established by the Agile team, resulting in less predictable
development efforts.

2. If collaboration is not occurring regularly, then priorities regarding
requirements will not be known and the result may not meet the
program’s vision or customer’s needs.

3. Where detailed requirement refinement is not understood or defined
at an organizational level, the adoption and full realization of the
benefits from Agile methods will be difficult to achieve.

4. If the organization’s goals are not clear or do not adequately reflect
stakeholder concerns and mission needs, then lower-level decision
making may be misaligned with the organization’s focus. This
misalignment can, in turn, erode trust and often results in overbearing
governance and bureaucracy, leading to delays.

5. If these software-specific needs are not considered to be part of the
larger program goals, then the implementation of software
applications may not fulfill minimum requirements established by the
organization or by the federal government.

6. If approved program goals do not align with both the IT and business
goals, then lower-level decision making runs the risk of being
misaligned with the organization’s focus.

Appendix IV: Auditor’s Key Questions and
Effects

Page 232 GAO-24-105506 Agile Assessment Guide

Key considerations and questions

1. Sponsorship for Agile development cascades throughout the
organization
• Who is/are the sponsor(s) for Agile software development?

• Do sponsors have sufficient authority to manage execution of
the transition within the overall goals established for the
transition group?

• Are the responsibility and accountability defined for each
sponsor and level of management in transitioning to Agile?

• Do all sponsors within the organization and IT agree on and
accept the goals and definition of success for the transition to
Agile?

• Do sponsors adhere to Agile software development commitments
documented in organizational policy?

• How were sponsors selected? Why do sponsors believe in and
support a transition to Agile software development (e.g. flexibility
demonstrated by a team adhering to a Scrum framework)?

• Does sponsorship cascade to the overall life-cycle management
process including those involved in certification and accreditation,
or operational test and evaluation?

• Is there guidance in place at the organization, encouraging
employees and groups to adopt Agile methods?

• What indicators have been considered regarding a program
readiness to adopt Agile? For example, are requirements flexible,
is there an established process in place to further define the
requirements over time, etc.?

• Are laws, policies, and guidance available to facilitate the adoption
of Agile?

2. Sponsors understand Agile development
• How familiar are sponsors with the Agile process in place within

the organization?
• Is each sponsor aware of the roles and responsibilities of other

sponsors?
• How familiar are sponsors with the values and principles of Agile?
• Can sponsors speak to how the values and principles of Agile are

reflected in the adapted organizational processes?

Best practice:
Organization culture
supports Agile
methods

Appendix IV: Auditor’s Key Questions and
Effects

Page 233 GAO-24-105506 Agile Assessment Guide

• Do sponsors accept accountability for results?
• Are sponsors committed to applying the organization’s Agile

framework consistently across the organization?
• Are sponsors aware of and in touch with Agile methods and

practices applied at the program and team levels of the
organization?

• Do organizational policies require sponsors and senior
stakeholders to be fully educated about Agile values and
principles?

3. Organization culture supports Agile
• How are teams physically structured (co-located or split across

geographic areas)?
• Are all members of a team co-located (business

representative/product owner, developers, testers, etc.) or are
only some co-located?

• If not co-located, how are team members communicating?
How often?

• If teams are virtually co-located, what tools are used to enable
collaboration?

• Are all team members, including the product owner, immediately
accessible to answer questions, as required?

• How does the organization promote trust between the enterprise
and the customer organization? An example includes conducting
a joint workshop that focuses on the effort and provides
opportunities for working together across organizational
boundaries.

• How is the organization promoting awareness of long-term goals
of the system to ensure that Agile teams can operate effectively
with greater autonomy?

• Does the organization have a process and terminology in place to
facilitate communication practices and encourage transparency,
availability of team message boards, collaborative workspaces,
etc.?

• Does the organization encourage communities of practice to
promote strong interactions in a healthy climate of trust?

• How does the organization implement inspection and adaptation
to continue to learn and adapt from feedback? Inspection and

Appendix IV: Auditor’s Key Questions and
Effects

Page 234 GAO-24-105506 Agile Assessment Guide

adaptation might take the form of a more formal meeting, such as
a retrospective, or may only require an informal set of discussions
among sponsors.

• What data are collected during the transition to Agile to facilitate
and support senior stakeholder adaptation and decision-making?

4. Incentives and rewards aligned to Agile methods
• How does the organization evaluate employees for traditional

programs? Is the evaluation process for an Agile program
different?

• Are appropriate organizational entities, such as human resources
or employee unions, involved to establish an organizational goal
to align incentives and rewards with their Agile values and
principles?

• Are rewards tied to results (e.g. working software) and not the
outputs (e.g. ancillary documents) of an Agile process?

• Has the organization developed specific criteria or refined the
process for evaluating employees associated with an Agile
program?
• What metrics does the organization collect and measure when

evaluating individual or team performance for an Agile
program?

• Who participates in performance reviews and how actively are
they involved in the day-to-day operations of an Agile program?

• Do organizational incentives and rewards promote and recognize
teams or individuals?

• What are some examples of incentives and rewards available to
teams?

Likely effects if criteria are not fully met

1. Without high-level encouragement, Agile implementation might
become a paperwork exercise, leading to a failure to complete
software development.

2. Without encouragement and commitment from upper-level
management, Agile teams may not appropriately collaborate with
product owners when they are unsure about the importance of certain
functionality, causing confusion that ultimately can result in a poor
product. Thus, functionality developed using a process that does not
embrace an Agile mindset might require heavy investment in the post

Appendix IV: Auditor’s Key Questions and
Effects

Page 235 GAO-24-105506 Agile Assessment Guide

deployment correction of errors or functionality enhancements to meet
customer needs.

3. Without sponsorship from senior stakeholders and the presence of an
Agile champion or multiple champions, the organization may not
embrace the transition, which can lead to inconsistent Agile practices
and lackluster results.

4. While having a clearly defined policy for Agile programs can be
effective in many cases, using a policy or mandate to force adherence
to Agile principles does not produce the healthy adoption of new
practices. For example, putting policies in place too early, before the
appropriate transition mechanisms are solidified, may lead to basic
compliance but without consideration for changes to the
organization’s culture and mindset that should occur during a
successful transition.

5. If sponsors are unable to effectively differentiate between Waterfall
and Agile implementation, they may hamper or impede the effective
adoption of Agile principles, leading to a breakdown in processes.

6. If all team members, including the product owner, are not immediately
accessible to answer questions, team work may be delayed.

7. If appropriate organizational entities, such as human resources, are
not considered, changes to incentive and reward systems might be
slow and ineffective, preventing team cohesion and unity, and
restricting productivity.

8. Since the federal acquisition environment is built on strong oversight,
traditional acquisition can often result in adversarial relationships
between the acquirers and the developers. In an Agile environment, a
climate of trust, built by shared experiences in which all parties feel
respected and accepted, is needed so that the program team can
achieve its fullest potential.

9. If an environment supportive to Agile methods is not in place, then
team and program operations might not have the resources
necessary to be successful, thus impeding delivery of the product and
not meeting agreed-upon goals for cost, schedule, and performance.

10. Changes to incentive and reward systems may be slow and
ineffective, thus preventing team cohesion and unity, and restricting
productivity unless there is active involvement from the appropriate
organization entities, such as human resources and employee unions.

11. If organizational rewards are not structured to promote team
performance, competitiveness or a lack of respect among team

Appendix IV: Auditor’s Key Questions and
Effects

Page 236 GAO-24-105506 Agile Assessment Guide

members might increase, impacting team behavior, productivity, and
outputs.

Key considerations and questions

1. Guidance is appropriate for Agile acquisition strategies
• Does the organizational acquisition policy and guidance require

the contract structure and acquisition strategy to be aligned to
support Agile methods of software development?

• What policy and guidance does the program use to analyze the
risks, benefits, and costs before entering into any contract?

• Are contracts structured to allow for the implementation of Agile
principles, frequent interim deliverables, product demonstrations,
changing requirements, etc.?

• Do the contract structure and acquisition strategy allow for interim
demonstration and delivery between official releases?

• Does the contract specify delivery cadence and how product
demonstrations will be used to solicit customer feedback?

• Does the contract structure allow the government team, in
coordination with the product owner, enough flexibility to adjust
feature priority and delivery schedule as the program evolves?

• What mechanisms are in place in the acquisition documents to
allow for close collaboration between the developers and
stakeholders in order for everyone to agree on what features have
the highest priority?

• Does the contract language reflect Agile principles such as
enabling incremental and frequent progress reviews at key points?

• Do contract oversight mechanisms align with Agile practices?
• From a contract oversight perspective, are the expectations of

reviewers and oversight personnel set appropriately to ensure
Agile principles can be effectively employed?

Likely effects if criteria are not fully met

1. If an acquisition strategy and contract structure do not allow for interim
delivery and product demonstrations, then the organization may lose
opportunities to obtain information and face challenges when
adjusting requirements to meet and adapt to customer needs. This
may negatively impact continuous delivery of software.

Best practice:
Organization
acquisition policies
and procedures
support Agile
methods

Appendix IV: Auditor’s Key Questions and
Effects

Page 237 GAO-24-105506 Agile Assessment Guide

2. If the organization does not adjust its oversight process to account for
Agile methods, then there may not be adequate insight into the
contractors’ productivity and it may decrease.

This chapter examines how to manage requirements elicitation,
refinement, and prioritization. The chapter also considers the need to
continually test the software under development to validate that it meets
requirements as it is being built and to ensure the traceability between
detailed and high level planning documents.

Key considerations and questions

1. How does the process to elicit customer needs, expectations, and
constraints incorporate customer feedback? Does the process
incorporate surveys, forums, and other mediums to brainstorm the
needs of the organization?

2. Does the process to elicit requirements reflect an iterative process?
3. Are requirements defined at various levels? If so, is there a different

approach to eliciting customer needs, expectations, and constraints
and a different process for prioritization decisions for each level?

4. Does the review cycle allow a customer to observe the system and
communicate additional functionality or modifications to existing
functionality?

5. Does the program have a process in place to field customer
suggestions, via testing, demonstrations, or other means?

6. Does the product owner proactively solicit and prioritize input from
customers to inform future requirements?

7. How does the program identify non-functional requirements? Is the
process to identify non-functional requirements iterative and on-
going?

8. How does the program capture non-functional requirements? For
example, one option is to define each discrete requirement as a
separate user story that traces to a non-functional feature such as
architecture.

9. How does the team test non-functional requirements?

Chapter 5:
Requirements
Development and
Management in Agile

Best practice: Elicit
and prioritize
requirements

Appendix IV: Auditor’s Key Questions and
Effects

Page 238 GAO-24-105506 Agile Assessment Guide

Likely effects if criteria are not fully met

1. If there is not a strong commitment to ongoing elicitation and
refinement of requirements, the delivered software may not meet the
changing needs of the customer or address the evolving technical
landscape.

2. If the product owner does not capture feedback from reviews for
consideration, there is no historical record of proposed requirements
or modifications for reference. The lack of a documented change
control process could hinder the decision makers’ insight into the true
value of delivered features.

3. Agile methods emphasize user-facing requirements. However, when
the focus on functionality becomes exclusive, the underlying system
(or non-functional) requirements can go unnoticed.

Key considerations and questions

1. How does the program refine requirements?
2. Does the program use tools to refine requirements?
3. What process does the program use to incorporate lessons learned

into requirements and their prioritization?

Likely effects if criteria are not fully met

1. If Agile programs do not learn to discover and refine requirements
throughout the development process, a program may miss an
opportunity to incorporate newly identified requirements or eliminate
requirements previously thought to be essential, which could create a
disconnect between deployed software functionality and the
customer’s needs.

2. Without ensuring full prioritization of current and future features and
user stories, a program could be at risk of delivering functionality that
is not aligned with the greatest needs of the customers.

Key considerations and questions

1. How do the team(s) and the product owner develop a shared
understanding of the definition of done?

2. How does the team establish acceptance criteria?

Best practice: Refine
and discover
requirements

Best practice: Ensure
requirements are
complete, feasible,
and verifiable

Appendix IV: Auditor’s Key Questions and
Effects

Page 239 GAO-24-105506 Agile Assessment Guide

3. How does the team determine when a requirement is adequately
defined or ready for work to begin?

Likely effects if criteria are not fully met

1. Not having clear criteria and an established definition of done allows
uncertainty into the development process.

2. Without clear definitions for ready, acceptance, and done, the team
may be working inefficiently and on requirements that are not high
ranking.

Key considerations and questions

1. What process does the product owner use to calculate the value of
work and ensure user stories are being developed based on relative
value? For instance, does the product owner value high-risk work
early in a release to mitigate risk, or determine value based on
resource availability, etc.?

2. How does the product owner balance customer needs and constraints
when determining the value of work?

3. What additional information is collected in the backlog documentation
to articulate relative value, details about the work, estimates for time,
and priority ranking?

4. How do the product owner and team work together to refine the
backlog priority?

5. How are customer suggestions considered in the backlog review and
refinement?

Likely effects if criteria are not fully met

1. If the product owner does not consider the relative value of the work,
all of the user stories can end up being developed just prior to
deployment. Often this is a sign that the product owner is not
prioritizing the requirements and is developing functionality that is not
immediately necessary.

2. This practice of developing each and every user story can lead to
problems if funding is reduced mid-iteration, mid-release, or mid-
program, or other external factors impede the progress of the
development work.

Best practice:
Balance customer
and user needs and
constraints

Appendix IV: Auditor’s Key Questions and
Effects

Page 240 GAO-24-105506 Agile Assessment Guide

3. When the product owner does not consider the relative value of work,
the team may develop functionality that is not immediately necessary
to meet customer needs.

4. If the highest value requirements are not completed first, the users
may be left without necessary functionality.

Key considerations and questions

1. How are continuous integration and automated testing incorporated in
the Agile environment?

2. What process is used to validate the user story: a user story
demonstration or a review at the end of each iteration?

3. How do customers participate in the review process to observe
functionality and whether it meets the intended purpose or requires
further refinement?

Likely effects if criteria are not fully met

1. If users and customers are not involved in the review and acceptance
process for software functionality, the software may not meet the
intended purpose.

Key considerations and questions

1. How does the Agile program manage requirements changes?
2. What process does the product owner use to manage requirements

and maximize the value of software delivered?

Likely effects if criteria are not fully met

1. If the requirements refinement process is too inflexible, it becomes a
change prevention process and user needs will not be adequately
incorporated into the program, making it less useful to users than
intended.

2. If the requirement change process is too flexible, then boundless
development can occur and the organization may not receive the full
value that it requires.

Best practice: Test
and validate the
system as it is being
developed

Best practice:
Manage and refine
requirements

Appendix IV: Auditor’s Key Questions and
Effects

Page 241 GAO-24-105506 Agile Assessment Guide

Key considerations and questions

1. How does the program maintain traceability from source requirements
to lower level requirements and then from those lower level
requirements back to the source requirements?

2. Is a traceability matrix or road map used to trace requirements?
3. If automated tools are used, are discrete fields included to trace high

level requirements to user stories?

Likely effects if criteria are not fully met

1. Without tracing a user story back to high level requirements, a
program cannot justify whether it is meeting the commitments made to
various oversight bodies. In turn, a program cannot establish that the
work is contributing to the goals of the program and thereby providing
value.

Key considerations and questions

1. How does the team assure they are working on tasks that directly
contribute to the completion of user stories committed for the current
iteration?

2. Is the product owner ensuring that user stories contribute to the
commitments made to oversight bodies?

3. What mechanism, such as a management plan or program road map,
etc., is used to lay out capabilities or features for development in a
timeline?

Likely effects if criteria are not fully met

1. If work performed is not associated with the user story commitments
for an iteration, there may be a misalignment between the
requirements and work, and it presents a risk for the program.

2. If the schedule of projects and phases and the scope of each project
are defined and committed to in advance, there should be alignment
between the user stories being developed and the scope of a specific
project.

Best practice:
Maintain traceability
in requirements
decomposition

Best practice: Ensure
work is contributing to
the completion of
requirements

Appendix IV: Auditor’s Key Questions and
Effects

Page 242 GAO-24-105506 Agile Assessment Guide

This chapter discusses how to manage an organization’s contracting
process to operate in and support an Agile environment. It considers the
importance of modular contracting and contract structure, using Agile
metrics, and integrating the program office and developers.

Key considerations and questions

1. Modular contracting
• Does the contract structure support small, frequent releases?
• Does the acquisition strategy avoid any potential lags between

when the government defines its requirements and when the
contractor delivers a workable solution?

• Does each program acquisition reflect individual increments with a
life cycle and scope such that they can be delivered
independently?

2. Enable flexibility in the contract’s requirements
• Does the contract structure provide sufficient flexibility to achieve

desired mission outcomes?
• Does the contract structure offer flexibility for refinement of

software requirements within the agreed-on scope of the system?
• Do the contracting strategies support the short development and

delivery timelines that Agile requires?
• Does the contract include a purpose, scope, period of

performance, location for conducting the work, background,
performance standards (the required results), and any identified
operating constraints?

• Does the contract include the product vision, strategic themes, an
initial road map, and an initial backlog of features and capabilities?

• Does the contract establish performance standards for the
expected accomplishment level required by the government to
meet contract requirements?

• Are the performance standards measurable and structured to
enable performance assessments?

3. Contract structure and type
• Has the program office clearly delineated to the contracting officer

whether the contract intends to procure goods or services?

Chapter 6: Agile
and the Federal
Contracting Process

Best practice: Tailor
acquisition planning
and contract structure
to align with Agile
practices

Appendix IV: Auditor’s Key Questions and
Effects

Page 243 GAO-24-105506 Agile Assessment Guide

• Do the solicitation and resulting contract clearly delineate the
responsibilities of the contractor to ensure that federal employees
oversee and make the final decisions regarding the disposition of
the requirements?

Likely effects if criteria are not fully met

1. If each program is not separable, then the government may need to
acquire future programs, which could be costly and burdensome.

2. If performance standards are not measurable and structured to enable
performance assessments, the government may not be able to
assess the expected accomplishments.

3. To follow the FAR and agency supplements and ensure that the
contractor does not perform inherently governmental functions, the
organization should carefully delineate the responsibilities of the
contractor in the solicitation.

4. If the contract does not provide sufficient structure to achieve the
desired mission outcomes, while offering flexibility for adaptation of
software requirements within the agreed-on scope of the system, it
may not be able to support an Agile development approach. A lack of
balance between structure and flexibility increases the likelihood of
disruption and delays.

Key considerations and questions

1. Contract data requirements rely on Agile metrics
• Does the contract data requirements list align with Agile metrics to

reflect the different processes and artifacts used in Agile?
• Do the quantity of deliverables and contract data requirements

established in the contract account for the program environment?
2. Data from Agile artifacts enables contract oversight

• Does the program collect data from the program’s releases,
features, and capabilities to enable contract oversight to hold
contractors accountable for producing quality deliverables?

• Do the work elements collected allow the program to measure
whether a user story is “done”?

• Does the program collect metrics throughout the Agile
development life cycle to monitor the contracted development
effort?

Best practice:
Incorporate Agile
metrics, tools, and
lessons learned
from retrospectives
during the contract
management process

Appendix IV: Auditor’s Key Questions and
Effects

Page 244 GAO-24-105506 Agile Assessment Guide

3. Conduct retrospectives to continually improve based on lessons
learned
• Does the program require retrospective reviews where

stakeholders interact with the developers?
4. Contract oversight reviews align with the program’s Agile cadence

• Do contract oversight reviews align with the program’s Agile
methods and cadence?

• Does the contract allow for contractual gate reviews to be tailored
in order to successfully align the contract requirements with the
functional requirements?

• Are reviews tied to the program’s Agile cadence for completing
releases?

Likely effects if criteria are not fully met

1. If the contract data requirements list, or other delivery process, does
not account for the Agile development program environment, the
program may miss the opportunity to collect data about the quality of
its software products.

2. If the program does not collect Agile metrics for technical
management, program management, and Agile methods, the
government may not have the right information for effective contract
oversight and will not be able to hold the contractors accountable for
producing high quality deliverables.

3. If reviews for the program are not tailored to align with the program’s
Agile cadence, the review structure could impede progress and cause
delays.

Key considerations and questions

1. Train program office, acquisition, and contracting personnel
• Do the acquisition team and developers have a common

understanding of Agile techniques so that an acquisition strategy
can be properly structured to establish a development cadence?

• Is there a close partnership between the developers, program
managers, customers, and contractors?

• Does the program have a dedicated onsite contracting team
trained in Agile implementation?

Best practice:
Integrate the program
office and the
developers

Appendix IV: Auditor’s Key Questions and
Effects

Page 245 GAO-24-105506 Agile Assessment Guide

• Have contracting personnel been trained to enable an Agile
mindset?

• Has management adopted a role of mentor, fostering an
environment of trust and open communication?

• What tools does the team use to enhance collaboration?
2. Identify clear roles

• Have clear roles been established for contract oversight and
management?

• Are the product owner and contracting officer’s representative
(COR) working closely to align the program’s business and
technical requirements?

• Are the COR and the product owner both government employees?
• Has a designated product owner been identified and are they

empowered to make decisions quickly and to prioritize
requirements within the scope of the road map?

• Are all personnel familiar with the distinction between contract and
functional requirements that are part of the Agile development
process?

• Does the contract have a dedicated contracting officer who works
closely with the product owner to align roles and responsibilities?

• Are the contracting officer, the product owner, and any
government developers working closely to develop an effective
acquisition strategy?

3. Awareness of the contract’s scope
• If additional requirements are identified after contract award, is

there enough time on the contract to complete the additional work
or can these requirements be substituted for currently-identified
features?

• Is the contract structured so that it can be modified should new
work be identified as higher priority to accomplish goals outside
the scope of the current contract?

• Is the product owner empowered to prioritize among system
requirements within the scope of the product vision, and is this
documented in the contract?

• Do persons in all roles understand the Agile process for the
program?

Appendix IV: Auditor’s Key Questions and
Effects

Page 246 GAO-24-105506 Agile Assessment Guide

Likely effects if criteria are not fully met

1. Without properly trained program office personnel, including
contracting personnel, staff will not be capable of assisting the
program in making business decisions and trade-offs that come with
the implementation of an Agile effort.

2. Without a dedicated onsite contracting team, who are trained in Agile
implementation and are able to assess the impact Agile cadences
have on the program’s acquisition strategy, the program may suffer
delays due to a lack of close partnership between the program and
the developers.

3. If management does not foster an environment of trust, the product
owner may not feel empowered to make decisions.

4. Roles must be clearly defined and responsibilities should be faithfully
carried out in order to prevent bottlenecks and ensure that rapid
feedback channels are clearly established from the start of
development.

5. Both the COR and product owner must be government employees so
that they can be empowered to make day-to-day decisions for the
development effort. If the product owner were not required to be a
government employee, they would not be empowered to make day-to-
day decisions for the development effort, causing development
delays.

6. If the contracting personnel and the program office do not understand
the distinction between contract and functional requirements, then all
compliance and security requirements may not be included.

7. Lack of involvement by the product owner and limited empowerment
can result in bottlenecks in the contracting process.

This chapter examines program monitoring and controls, such as cost
estimating, scheduling, and earned value management. Following a brief
overview of the work breakdown structure, it explains the application of
best practices in an Agile environment discussed in companion GAO Best
Practice Guides.

Detailed best practice checklists and effect statements are found in these
guides; the GAO Cost Guide (GAO-20-195G) and the GAO Schedule
Guide (GAO-16-89G).

Chapter 7: Agile and
Program Monitoring
and Control

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Appendix IV: Auditor’s Key Questions and
Effects

Page 247 GAO-24-105506 Agile Assessment Guide

This chapter brings together knowledge gained from the previous
chapters to explain how an organization can use appropriate metrics to
monitor program health in an Agile environment. It emphasizes the
importance of identifying and aligning metrics to program needs and with
meaningful incentives. It reiterates the role of management commitment
and the value of frequent communication and the importance of data-
driven decision making.

Key considerations and questions

1. How does the organization consider metrics and determine which
metrics are appropriate for the chosen software approach?

2. Do the metrics address technical management, program
management, and Agile methods?

3. How does the organization identify and delineate metrics for each
level, organization, program, and team?

4. How does the organization ensure that metrics are quantifiable,
meaningful, repeatable and consistent, and actionable?

5. Are Agile developers and managers conveying meaningful information
to address customer concerns?

6. How does the program delineate between metrics needed for the
team to measure performance, and metrics needed for the customer?

7. With what frequency does the program collect metrics?
8. How does the program measure the value of a specific metric?

Likely effects if criteria are not fully met

1. Without meaningful, clear, and actionable metrics, management will
not have the information they need to evaluate program performance.

2. If a program is not aligning metrics with user questions, it may not
have the data needed to evaluate program performance.

3. Not establishing metrics to obtain user feedback limits a program’s
understanding of the value being delivered with each software
release.

Chapter 8: Agile
Metrics

Best practice: Identify
key metrics based on
the program’s Agile
framework

Appendix IV: Auditor’s Key Questions and
Effects

Page 248 GAO-24-105506 Agile Assessment Guide

Key considerations and questions

1. Are metrics tied to organization and program goals? Is the program
able to measure the success of the program goals from the collected
metrics?

2. Are metrics identified and tracked that are used to impact decision
making?

3. Do the metrics allow traceability from the road map through releases
and items in the product backlog?

4. Has the organization defined the goals, objectives, and performance
information appropriate to managerial responsibilities and controls at
each level of the organization?

5. Have Agile metrics been tailored to allow the organization to convey
progress and achievements to internal and external customers?

Likely effects if criteria are not fully met

1. If the metrics do not allow traceability from the road map through the
releases and prioritized backlog, the organization may not have the
right information to make decisions about prioritization and potential
re-planning.

2. If the organization does not adopt an organized structure to collect
performance information at each level of the organization, the metrics
may not align with management goals.

3. If Agile metrics are not tailored to convey developers’ progress and
achievements to internal and external customers, it can impede
feedback and communication between both entities.

Key considerations and questions

1. Are metrics established at the start of the program?
2. Are metrics aligned with incentives?
3. Are metrics monitored at the organization, program, and team levels?
4. Are reward and incentive structures based on team

accomplishments?
5. How is the Agile team determining the value of each metric in

relationship to the cost of collecting the supporting data?
6. Are metrics collected to measure the flow of work over time, such as

features delivered in each iteration?

Best practice: Ensure
metrics align with
and prioritize
organization-wide
goals and objectives

Best practice:
Establish and validate
metrics early and
align with incentives

Appendix IV: Auditor’s Key Questions and
Effects

Page 249 GAO-24-105506 Agile Assessment Guide

7. Is the team collecting metrics associated with product quality, such as
the number of defects identified after a product deploys?

8. Is the team capturing metrics that measure adherence to Agile
software development best practices?

Likely effects if criteria are not fully met

1. If metrics are not aligned with incentives, then the teams may not feel
appropriately rewarded for achieving program goals.

2. If the effort to collect data to support a metric is too extensive, the
metric may not deliver enough value to justify its collection.

Key considerations and questions

1. Has management established procedures to collect metrics
consistently over time?

2. Is management monitoring the performance metrics, and using them
to inform corrective actions?

3. Is management working to ensure that metrics are in place to support
automation and Agile program management and reporting?

4. How is management supporting programs’ abilities to tailor metrics to
ensure that they meet organization needs while also limiting
unnecessary work on the part of the program?

5. How is management balancing periodic program-wide health
assessments with monitoring the progress made in deploying
capabilities during each release?

6. During performance review meetings, are staff from different levels of
the organization involved?

Likely effects if criteria are not fully met

1. If management does not demonstrate a commitment to use
performance metrics, others may not embrace metrics as useful.

2. If a program is forced to report Waterfall development-based metrics,
such reporting will not only impede Agile adoption and execution, but
also will not provide accurate insight into the software development
process.

3. If program officials do not establish performance thresholds and
targets, oversight bodies may lack information to ensure the program
is meeting acceptable performance levels.

Best practice:
Establish
management
commitment

Appendix IV: Auditor’s Key Questions and
Effects

Page 250 GAO-24-105506 Agile Assessment Guide

Key considerations and questions

1. Are metrics designed to support specific decisions that need to be
made at different levels of the organization?

2. Does the contract achieve desired mission outcomes?
3. Is the program collecting technical, performance measurement, and

process improvement metrics?
4. Does the organization capture metrics that allow it to determine

whether Agile development activities contribute to organization goals
as planned?

5. Do metric reviews match the cadence of the program?
6. Are target values established for critical metrics?
7. Are contracts drafted in such a way that they allow flexibility for

implementation and provide meaningful information to decision
makers? For example, are metrics such as software size,
development effort, schedule, staffing, progress, etc. collected?

8. How are product quality and customer satisfaction monitored
throughout the development cycle?

9. How are changing priorities monitored throughout the development
cycle?

10. How are metrics considered in the requirements when drafting the
contract?

11. How does the program collect metrics to gain insight into the costs
associated with delaying work or missing a milestone?

12. How does the program estimate the cost of technical debt and the
time and effort necessary to repay the debt?

13. How does the program measure and monitor the frequency of
releases, product delivery, and program progress? For instance, burn
up, and burn down charts may be used to communicate progress.

14. Does the program use automated tools to capture metrics?
15. How does the program evaluate data for its completeness,

comprehensiveness, and correctness to ensure that it is suitable for
its intended purpose?

16. Does the program use automated tools for testing?

Best practice: Commit
to data-driven
decision making

Appendix IV: Auditor’s Key Questions and
Effects

Page 251 GAO-24-105506 Agile Assessment Guide

17. Is the program collecting necessary data that cannot be captured
using automated tools, such as data related to team dynamics or
other organizational behaviors?

Likely effects if criteria are not fully met

1. If the metric review schedule does not match the cadence of the
development process, then management may not be able to provide
timely feedback to take necessary corrective actions in order to
maximize the value of delivered software.

2. If contracts are not drafted to capture the requirements to align with
Agile processes, decision makers may not have the meaningful
information they need to manage development.

3. Without collecting metrics for overall program performance,
organizations will not have a good understanding of the cost and time
required to achieve a valuable product.

4. The data collected should be evaluated for its completeness,
comprehensiveness, and correctness to ensure that it is suitable for
its intended purpose. Otherwise, data can mislead decision makers
instead of accurately informing them about the program’s status.

5. Without data collected using both automated tools and other data
collection processes, decision makers may not be able to determine if
the program is delivering its desired value and outcomes.

Key considerations and questions

1. How are metrics used to track Agile programs daily?
2. How is performance information communicated frequently and

efficiently?
3. What tools are used to facilitate access to and dissemination of

performance metrics?
4. Does the program have access to automated tools and dashboards to

provide real-time input into oversight and decision making?
5. Does management have tools that allows it to view data consistently

across programs?

Likely effects if criteria are not fully met

1. If metrics are not relevant, reliable, and timely, they cannot help
mitigate Agile adoption and program execution risks.

Best practice:
Communicate
performance
information frequently
and efficiently

Appendix IV: Auditor’s Key Questions and
Effects

Page 252 GAO-24-105506 Agile Assessment Guide

2. Without tools to facilitate frequent information dissemination, decision
makers may not have access to performance information and may not
be able to take action in a timely manner to make improvements or
corrective actions.

3. Miscommunicating performance information prevents staff and
stakeholders from making necessary improvements or corrective
actions in a timely manner can, contribute to program execution risks.

4. Without automated tools, management may not have access to data
that allows them to assess all programs consistently and quickly.

Appendix V: Common Agile Frameworks

Page 253 GAO-24-105506 Agile Assessment Guide

This appendix provides details on the most common Agile development
frameworks that are mentioned in chapter 1. Each highlighted framework
includes an overview, a brief discussion of the typical structure, and
unique principles of the framework.

The Agile Manifesto was published in 2001; however, several frameworks
that preceded it may have influenced the manifesto. Figure 22 provides a
timeline showing the evolution of Agile development in the United States.
For example, prior to 2001, some versions of incremental software
development were being used, and in the1990s, several Agile
frameworks were published, most notably the presentation of Scrum in
1995. After the issuance of the Agile Manifesto, frameworks such as
Kanban began incorporating the principles from lean manufacturing,
which further supplemented Agile principles. Agile frameworks continue to
evolve, giving developers a wide array of options for tailoring their
development approach. Frameworks included in this appendix are: those
commonly used according to literature;1 frameworks used on federal
programs GAO previously reported on and those recommended for
inclusion by experts. Although we are referring to these frameworks as
“Agile frameworks,” this is a loose term encompassing Agile-related
frameworks, some which may not adhere to all Agile principles. The
frameworks in figure 22 are discussed in this appendix.

1CollabNet VERSIONONE, COLLAB.NET, VERSIONONE.COM, 16th Annual State of
Agile Report, (Atlanta, GA: 2022).

Appendix V: Common Agile Frameworks

Appendix V: Common Agile Frameworks

Page 254 GAO-24-105506 Agile Assessment Guide

Figure 22: Timeline of Agile Development

DevOps methods combine both development and operations. Prior to
DevOps, a typical Agile team would have been responsible for the
software from requirement to deployment, with an operations team being
responsible for the support of the software after the deployment. DevOps
reduces the barrier between development and operations by combining
them, thus delivering software quickly and ensuring its high quality by
using the same team. The rationale is that, if the developers are also
responsible for support, they may have more of an incentive to create
reliable code. Further, security becomes an integrated part of the
development build that is the responsibility of the whole team,
incorporated into all stages of the software development workflow under
DevSecOps.

In DevOps, the development and operations teams collaborate: the
developers may also be responsible for operation, or there could be two
separate teams that have open communication. Regardless of the
particular configuration, teams should be made to feel ownership of the
entire software life cycle.

DevOps
Overview

Structure

Appendix V: Common Agile Frameworks

Page 255 GAO-24-105506 Agile Assessment Guide

The driving force of DevOps is to create frequent, small releases.2 In
order to do this, DevOps teams frequently adopt several of the principles
listed in table 18.

Table 18: DevOps Principles

Principle Description
Automation of processes DevOps teams try to release software as frequently as possible, which requires automated

testing and development (continuous integration and continuous delivery).
Standardized environment Many issues of interoperability arise when new code does not work in the operations

environment. Since the DevOps team develops the software and troubleshoots bugs in the
operations environment, the developers become more familiar with this environment.
Standardizing the environment helps with these interoperability issues.

Microservices In order to push frequent releases, the DevOps team uses an architecture comprised of
microservices: small, decoupled components that ideally work independently of the other
software components.

Monitoring Since DevOps teams are responsible for support and operations, the teams should be
monitoring the operational software. The frequent releases can help the team isolate and
pinpoint which software update has an issue.

Source: GAO analysis of Booz Allen Hamilton information. | GAO-24-105506

2This is in accordance with the third principle in the Agile Manifesto, “Deliver working
software frequently, from a couple of weeks to a couple of months, with a preference to
the shorter timescale.” © 2001-2019 Agile Manifesto authors https://agilemanifesto.org.
See p. 9 of this guide for the complete Agile Manifesto.

Principles

https://agilemanifesto.org/

DevOps is a way to extend Agile principles to
encourage collaboration between developers
and operations staff. DevOps is a framework
for software development that emphasizes
communication, collaboration, and continuous
integration between the software developers and
the operations team. But DevOps breaks down
these to silos by ensuring that development and
operations staff sit together, collaborate on every
step of the process, and even share job functions
when necessary. In this way, the development and
operations staff can create and deploy maintain-
able software successfully and more rapidly. In
conclusion, DevOps extends the Agile principle of

a cross-functional team. Specifically, a team that
has the tools and skills to stay engaged at each
step of a product’s life-cycle.

DevSecOps is short for development, security,
and operations. Similar to how DevOps merges
development and operations, DevSecOps inte-
grates security into every stage of the software
process. Instead of having a separate team in
charge of security that comes in at the end of
software development, security becomes a
shared responsibility of the whole team,
addressing security concerns as the software
is developed.

DevOps is a framework that extends
Agile principles to encourage collab-
oration between developers and
operations staff. DevOps emphasizes
communication, collaboration, and con-
tinuous integration between the software
developers and the operations team.

DEVOPS
EM

EEL

R PA O NT I NTO

	 CONTINUOUS INTEGRATION

	 COMMUNICATION 	 COLLABORATION

DEV DEVOPS
OPS

Source: GAO analysis of agency and private sector information (data);
Vectormine/stock.adobe.com (images). | GAO-24-105506

Appendix V: Common Agile Frameworks

Page 257 GAO-24-105506 Agile Assessment Guide

The Disciplined Agile (DA) framework scales Agile methods with the
intent of addressing the full IT product delivery process from program
initiation to deployment into production. DA is a hybrid process that
adopts and tailors strategies from a number of frameworks. Specifically,
DA adopts strategies from Scrum, Extreme Programming (XP), Agile
Modeling (AM), Agile Unified Process (AUP), and Kanban. DA is goal-
driven, emphasizing the delivery life cycle and how a product can provide
a solution (rather than being simply an independent product).

The primary roles of a DA team are described in table 19.

Table 19: Disciplined Agile Roles and Responsibilities

Role Responsibilities
Stakeholder Provides requirements, either as part of the team or through a team representative, in order to inform user

stories. Also responsible for ensuring that developed products satisfy all appropriate requirements following
iterations and tests, thus preparing the products for release. Stakeholders include four distinct sub-groups:
customers (who actually use the system), principals (decision makers who pay for the system), partners
(who make the system work in the environment with other existing systems), and insiders (developers).

Product owner Clarifies details and maintains list of work items that the team needs to implement. Represents work of Agile
team to stakeholder community.

Team member Performs analysis, testing, evaluation, design, programming, planning, estimation, and many more activities
throughout the program.

Team lead Facilitates communication and empowers team members to self-optimize their processes. Ensures that the
team has the resources needed.

Architecture owner Makes system architecture decisions for the team and ensures that the solution is integrated and tested on
a regular basis. The individual in the team lead role on smaller Agile teams may also fill the role of
architecture owner.

Source: GAO analysis of Department of Justice (DOJ) and Federal Aviation Administration (FAA) information. | GAO-24-105506

In addition to these primary roles, DA identifies secondary roles for
specialist, independent tester, domain expert, technical expert, and
integrator. These secondary roles are not required for every team and are
often used when a program scales larger and may only be needed for a
short period of time.

Key principles for DA are shown in table 20.

Disciplined Agile
Overview

Structure

Principles

Appendix V: Common Agile Frameworks

Page 258 GAO-24-105506 Agile Assessment Guide

Table 20: Disciplined Agile Principles

Principle Description
People first DA defines primary roles for a specific team, as described in table 19
A hybrid framework DA uses strategies and principles from many different methods, such as Scrum, XP, Kanban,

and more.
A full delivery life cycle The process supports the full life cycle, from planning to release. A DA program can choose from

four different life cycles and tailor each to support their program.
Goal driven DA emphasizes that a program is flexible, easy to scale, and lays out general goals and various

solutions including any pros/cons. The program uses this information to pick the solution that
works best.

Enterprise aware A DA team works within an organization, follows the organization’s guidance, and leverages
existing assets.

Source: GAO analysis of DOJ and FAA information. | GAO-24-105506

Created in 1994, the Dynamic Systems Development Method (DSDM)
brings control and quality to software development by focusing on
transparency and communication. The framework, which can be used to
scale Agile for larger programs with multiple teams, is intended to
manage the full life cycle of a program.

DSDM has a defined 4-phase process that covers the entire life cycle of a
program: feasibility, foundations, evolutionary development, and
deployment. The team is sorted by areas of interest: business, technical,
and management. The roles to support these areas of interest are
categorized into program, development, and supporting roles. Each
specific role has defined responsibilities within the DSDM process. For
example, the technical coordinator provides technical leadership at the
program level.

DSDM promotes certain practices—such as facilitated workshops,
prioritizing work, and modeling, among others—to facilitate the program
process and align with DSDM principles. Specifically, facilitated
workshops are used to help a team reach consensus on the requirements
for a deliverable. In addition to prioritizing the work, DSDM uses the
MoSCoW technique, in which work is categorized as must have, should
have, could have, or won’t have this time. This triage allows the team to
focus on the highest priority work. Finally, DSDM promotes modeling

Dynamic Systems
Development Method
Overview

Structure

Appendix V: Common Agile Frameworks

Page 259 GAO-24-105506 Agile Assessment Guide

(visual representation of a program) as a way to increase communication
within the team.

There are eight principles in DSDM, described in table 21.

Table 21: Dynamic Systems Development Method Principles

Principle Description
Focus on the business need The team understands the business needs and priorities. There is continuous business

commitment throughout development.
Deliver on time Teams time box their work in iterations, allowing them to always deliver on time while flexing

the scope of features. With iterations, the team should be able to have a predictable
delivery.

Collaborate The entire team—including stakeholders and business representatives—collaborate for
better understanding and shared ownership of a program. This is supported by empowering
team members to make decisions in areas they represent.

Never compromise quality The level of quality is agreed on before development starts with acceptance criteria. Testing
is integrated throughout development, done early and continuously.

Build incrementally from firm
foundations

Understand the business problem and plan the proposed solution. Teams should design an
overarching solution first in order to lay a firm foundation and build the solution from this
foundation, with increments providing for feedback and routine re-assessment of the
program.

Develop iteratively Iterative development allows for timely feedback through frequent demonstrations and
reviews.

Communicate continuously and clearly DSDM encourages informal, face-to-face communication and daily standups. Additional
modeling, prototyping, and workshops can increase communication throughout the team.

Demonstrate control In order to demonstrate control, the program manager should measure and report plans and
progress. The program manager should be assessing the program according to the
business needs.

Source: GAO analysis of DSDM Consortium information. | GAO-24-105506

eXtreme Programming (XP) advocates frequent releases in short,
iterative development cycles. This approach promotes team productivity
and introduces checkpoints where various customer/stakeholder
requirements can be introduced, refined, and adopted. Kent Beck
originally developed XP while working for Chrysler Corporation in 1996;

Principles

eXtreme
Programming
Overview

Appendix V: Common Agile Frameworks

Page 260 GAO-24-105506 Agile Assessment Guide

he published and expanded on the method in eXtreme Programming
Explained.3

XP does not prescribe formal roles and responsibilities to teams; instead,
it relies on teams that are self-organized, cross-functional, and include the
customer. XP has several best practices, including: small releases,
simple design, and pair programming, among others.

Like other Agile frameworks, XP attempts to reduce the cost of changes
in requirements by having multiple short development iterations with
feedback loops to continually refine customer requirements, rather than
one single long cycle. This approach focuses on coding and helps to
ensure that team members have a complete understanding of business
requirements early in the process.

Activities performed during every XP software development cycle include
planning, managing, designing, coding, and testing, which are further
described in table 22.

Table 22: eXtreme Programming Activities

Activity Description
Planning Involves writing user stories, release planning, and dividing programs into small iterations.
Managing Teams operate in an open work space at a sustainable pace, participate in standup meetings, and continually

measure their velocity.
Designing Teams focus on keeping the design simple, only adding functionality when needed, and refactoring, among

other things.
Coding In XP, all code is produced using pair programming, meaning two developers create the code together, with

the intent of increasing the quality of the code. In addition, unit tests are written first, standards are used for all
code, and new code is integrated often. XP also practices the idea of collective ownership, meaning all team
members have a responsibility for the code base and can make changes to improve it.

Testing All code should have a unit test, and the code must pass all unit tests before it is released. Acceptance tests
are run frequently and all test results are published.

Source: GAO analysis of DOJ and Agile Alliance information. | GAO-24-105506

Table 23 shows the five key values embraced by XP to guide how team
members, program managers, and stakeholders interact and collaborate
to ensure product quality. When employed by teams, these values
(communication, simplicity, feedback, courage, and respect) can help

3Kent Beck and Cynthia Andres, eXtreme Programming Explained: Embrace Change
(Boston: Addison‐Wesley Professional, 2004).

Structure

Principles

Appendix V: Common Agile Frameworks

Page 261 GAO-24-105506 Agile Assessment Guide

them to achieve clear coordination and feedback throughout the
development process.

Table 23: eXtreme Programming Values

Value Explanation
Communication System requirements are effectively communicated from the customer to the team. XP builds rapidly and

passes along institutional knowledge among members of the development team in an effort to give one
another consistent information. XP advocates sharing among customers and designers to improve the design
and construct the system.

Simplicity XP emphasizes starting with the simplest possible solution and building functionality on it later. To achieve
this goal, XP strives to do only what is asked for, and nothing more, in order to maximize value. Simplicity in
code also contributes to reduced maintenance, as the code can be easily understood by the maintainers.

Feedback Teams obtain system feedback through periodic integration and unit testing that is intended to catch
problems before the product is released. Teams help ensure that the software meets customer needs by
conducting acceptance testing and incorporating feedback.

Courage Programmers are encouraged to throw away portions of low-quality code they have worked on to ensure what
they deliver is high quality. Improved code can lead to better results and remove impediments to effective
development. XP programmers are also urged to accurately report progress, develop reasonable estimates,
and adapt to changes when they happen.

Respect Team members are expected to be respectful to one another and to value the expertise of their customers,
who participate in the development effort. Program managers and executives respect team members’
responsibility and appropriate authority over their own work.

Source: GAO analysis of DOJ and Agile Alliance information. | GAO-24-105506

The Kanban framework encourages collaboration within and cooperation
across teams to smooth the flow of work from commitment to delivery. It
focuses on relieving workers and systems of overburdening to improve
predictability and quality. The Kanban framework seeks to alleviate
bottlenecks and to optimize flow by limiting “in-progress” work in order to
efficiently and effectively design and deliver products to customers.
Limiting work-in-progress prevents a team from committing to too much
work. Since new work should not be started until the current work has
been completed, bottlenecks blocking the completion of work should
become more visible in the process. This framework focuses on the flow
of work and was inspired by lean manufacturing. Kanban is still used in
manufacturing, as well as other applications; this section focuses on
Kanban for software development.

There are no prescribed roles in Kanban, allowing for maximum team
flexibility so that members can work on each other’s artifacts easily.
Teams use a Kanban board to keep track of their work, which can be

Kanban
Overview

Structure

Appendix V: Common Agile Frameworks

Page 262 GAO-24-105506 Agile Assessment Guide

either physical or virtual. A Kanban board maintains a clear, visual
representation of the work through various stages of development. An
example of a typical board is shown in figure 23.

Figure 23: Kanban Board

A Kanban board displays work using notes. The numbers at the top of
each column are the limits on the number of work items allowed per
column. As a task is completed, the related notes are moved to the next
stage so that completed and remaining work can be seen. Having a board
to review provides a summary of where the team needs to focus its
efforts.

Kanban is based on three basic principles: visualize what you do today
(workflows), limit the amount of work-in-progress, and focus on flow
(backlog prioritization). These Kanban principles are intended to be
responsive to changes that often occur during a demonstration. Having a
short cycle time helps ensure that customers provide feedback to the
team on a regular basis, resulting in delivery of desired software features
faster than traditional methods. In addition, Kanban promotes having user
stories that are all similar in size in order to limit in-process work so that it
is both manageable and predictable.

Principles

Appendix V: Common Agile Frameworks

Page 263 GAO-24-105506 Agile Assessment Guide

Lean software development combines lean manufacturing and IT
principles to streamline software development. Although there is no single
lean software development process, the structure, principles, and
practices further explained in table 24 stem from the book Lean Software
Development by Mary and Tom Poppendieck.4

Lean and Agile are related philosophies. More specifically, Lean can be
characterized as related to, but not a subset of, Agile. Many of the lean
practices and principles can be mapped to Agile methods, such as speed
and customer engagement.

There is no formal team structure according to Lean principles.

Lean software development is organized around seven key principles that
are aligned closely with those found in Lean manufacturing, as shown in
table 24.

Table 24: Lean Software Development Principles

Principle Description
Eliminate waste Recognize waste, create nothing but value, and keep the code simple.
Amplify learning Try different ideas, maintain a culture of constant improvement, and teach problem-solving

methods.
Deliver fast Deliver solutions in small iterations, focus on cycle time, release early and often, and follow the

just-in-time ideology.
Defer commitment Make irreversible decisions at the last responsible moment (when the customer better realizes

their need), break dependencies between components, and maintain options for as long as
possible.

Empower the team Train team leaders and supervisors, move responsibility and decision making to the lowest
possible level, and instill a “find good people and let them do their own job” approach.

Build integrity in Synchronize effort, automate testing and routines, and refactor to avoid code duplication.
Optimize the whole Focus on value to the customer, deliver a complete product with input from all stakeholders, and

find and eliminate all defects.

Source: GAO analysis of DOJ and Addison-Wesley Professional information. | GAO-24-105506

4Mary and Tom Poppendieck, Lean Software Development: An Agile Toolkit (Boston,
Massachusetts: Addison-Wesley Professional, 2003).

Lean Software
Development
Overview

Structure

Principles

Appendix V: Common Agile Frameworks

Page 264 GAO-24-105506 Agile Assessment Guide

These principles guide lean software development by emphasizing
limiting any “waste” that teams create (e.g. duplicate code, re-iteration of
working components, and extensive documentation of activities beyond
what is required) to achieve a streamlined, efficient program outcome.

There are also 22 practices or tools to implement lean software
development practices. Among them are eliminating waste and focusing
on value by using value stream mapping, amplify learning via feedback
from iterations, and deliver as fast as possible with pull systems and
queuing theory.

The Scaled Agile Framework (SAFe) is a governance model used to align
and collaborate product delivery for modest-to-large numbers of Agile
software development teams. The framework provides guidance for roles,
inputs, and processes for teams, programs, large solutions, and
portfolios. It is also intended to provide a scalable and flexible governance
framework that defines roles, artifacts, and processes for Agile software
development across all levels of an organization.

SAFe has different configurations for the levels of teams to adopt SAFe,
depending on the size and complexity of the product. These levels allow
teams to perform iterative processes using Agile frameworks such as
Scrum, XP, Lean, or others to develop features to be used by a larger
program that conforms to the overarching portfolio vision within an
enterprise. SAFe uses many of the same tools as other Agile methods,
such as backlogs, development teams, and time boxed iterations.

Depending on the scale, the framework is divided into different levels,
each with its own responsibilities and processes that connect the different
levels. Development teams in SAFe align with the selected framework
and are advised to embrace the traditional “cross-functional team”
mentality. At the program level, these Agile teams come together to
create a “release train” that reflects specific roles and responsibilities, as
shown in table 25.

Scaled Agile
Framework
Overview

Structure

Appendix V: Common Agile Frameworks

Page 265 GAO-24-105506 Agile Assessment Guide

Table 25: Scaled Agile Framework Roles and Responsibilities

Role Responsibilities
Scrum master/team coach Facilitates meetings, removes impediments, and maintains the team’s focus.
Product owner Owns the team backlog and prioritizes work. Also acts as the customer for developer questions and

collaborates with Product Management to plan and deliver solutions.
Development team Has three to nine individual contributors, covering all the roles needed to build an increment of value for

an iteration.
Release Train Engineer Facilitates program-level execution, removes impediments, performs risk and dependency management,

and fosters continuous improvement.
Product management Responsible for identifying items to be added to the program backlog, prioritizing the backlog, and

interfacing with product owners to confirm alignment between the software components and enterprise
goals. Also responsible for the vision, road map, and new features in the program backlog.

System architect/engineer Focuses on stakeholder needs and ensuring that the solution is designed to cater to these needs while
delivering functionality across various features, components, and the larger solution.

Business owners Responsible for the business outcomes of the product.

Source: GAO analysis of DOJ, FAA, and Scaled Agile Inc. information. | GAO-24-105506

SAFe5 has ten framework principles, outlined in table 26, that can be
tailored to suit a program’s requirements.

Table 26: Scaled Agile Framework Principles

Principle Description
Take an economic view Decisions are made within the proper economic context. Strategies for incremental delivery are

developed and communicated. A framework is created that takes into account risk, different types
of cost, and decentralized decision making.

Apply systems thinking Systems thinking solutions development takes a holistic view, incorporating both the system and
the environment, taking into account people, management, and processes.

Assume variability; preserve
options

Variability is neither good nor bad in SAFe. Multiple options should be considered, and these
options should be maintained for as long as possible. Learning should be encouraged, even if it
results in mistakes.

Build incrementally with fast,
integrated learning cycles

Develop the system incrementally in order to determine technical feasibility, establish usability,
and gain customer feedback, among other benefits. Value is delivered at each increment, and
uncertainty is reduced as more is learned.

Base milestones on objective
evaluation of working systems

Milestones with SAFe are based on demonstrating working software. These milestones allow
stakeholders to frequently evaluate the software.

Make value flow without
interruptions

Limiting work-in-progress helps ensure that teams are not overloaded with work, while visualizing
work-in-progress allows for easy identification of bottlenecks. Another way to limit work-in-
progress is to decrease batch size (batch being the requirements, design, code, tests, etc.), so
more work can flow through the process. This is typically accomplished by increasing automation
and infrastructure.

5As of July 2023, this guide refers to SAFe v6.0.

Principles

Appendix V: Common Agile Frameworks

Page 266 GAO-24-105506 Agile Assessment Guide

Principle Description
Apply cadence, synchronize with
cross-domain planning

Cadence provides a rhythmic pattern and a consistent routine to development. Synchronization
allows the teams to align with a common goal and is enabled by events like release planning,
where all stakeholders participate in planning the next increment.

Unlock the intrinsic motivation of
knowledge workers

Since knowledge workers understand more about the technical aspects of their work than their
manager, the manager’s role is to motivate teams rather than direct their work. Motivation should
stem from innovation and engagement rather than threats, intimidation, or fear. Managers provide
workers with a larger vision, which guides them to autonomously perform daily tasks. Managers
support teams during disagreements (where appropriate) by helping them to negotiate and
problem solve, among other things.

Decentralize decision-making Strategy decisions that are infrequent, long lasting, and provide significant economies of scale can
be centralized while all other decisions can be decentralized in order to reduce delays.

Organize around value The organization’s structure with SAFe should be driven by value flow instead of traditional silos.
This allows the organization to more quickly adapt to changes in the value flow.

Source: GAO analysis of DOJ, FAA, and Scaled Agile Inc. information. | GAO-24-105506

Scrum, the most widely used framework for Agile software development,
seeks to address complex problems while delivering high-value products
frequently and effectively. Originating from a 1986 text by Hirotaka
Takeuchi and Ikujiro Nonaka titled, “The New New Development Game,”
the method was first referred to as “Scrum” by Ken Schwaber and Jeff
Sutherland in the early 1990s to emphasize a holistic approach using
multiple, overlapping phases.6 Schwaber and Sutherland authored the
Scrum Guide, which details the methodology.7 Scrum relies heavily on
the concept of “Scrum teams” that are responsible for producing working
software in increments often referred to as a “sprint.” Each sprint is a
short, time boxed iteration that is intended to provide distinct, consistent,
and incremental progress of prioritized software features.

The Scrum framework is centered on Scrum teams where members fill
specific roles and responsibilities. These members are responsible for
various tasks, including developing Agile artifacts. Each team contains
members that fit into one of these three main roles, as shown in table 27.

6Takeuchi, Hirotaka, and Ikujiro Nonaka. “The New New Product Development Game.”
Harvard Business Review 64, no. 1 (January–February 1986).

7Ken Schwaber and Jeff Sutherland, The Scrum Guide:™ The Definitive Guide to Scrum:
The Rules of the Game (2017) (https://scrumguides.org). The guide is licensed under the
CC BY-SA 4.0 license.

Scrum
Overview

Structure

https://scrumguides.org/

Appendix V: Common Agile Frameworks

Page 267 GAO-24-105506 Agile Assessment Guide

Table 27: Scrum Team Structure

Role Responsibility
Product owner Represents stakeholders.
Development team The group that carries out software coding, implementation, testing, and development.
Scrum master Responsible for making sure Scrum theory, practices, and rules are adhered to by the

development team.

Source: GAO analysis of DOJ, Booz Allen Hamilton, and The Scrum Guide information. | GAO-24-105506

With Scrum, teams are self-organizing and choose how best to
accomplish their work, rather than being directed by management. Teams
are also cross-functional, meaning they include members who have the
capabilities to achieve the work without depending on someone outside
the team. This model optimizes flexibility, creativity, and productivity and
seeks to eliminate the need for a traditional program manager since each
team supervises itself.

During sprint planning meetings, the team determines the type of work to
be done, prepares the sprint backlog (ordered list of tasks to be
accomplished during the sprint), and communicates expected
responsibilities between team members. Teams meet daily during each
sprint for a brief status update. Each sprint is intended to produce, among
other things, completed increments of software features that are
ultimately built into the final product solution.

The sprint backlog is a subset of the most important features from the
overall product backlog. Teams decompose these requirements into user
stories that describe what the customer wants. The software developed
during the sprint should satisfy those needs in order for a user story to be
considered complete.

A burn down chart is a public display of the remaining work in the sprint
backlog. The team updates the burn down chart daily to keep everyone
informed of the status of tasks.

Appendix V: Common Agile Frameworks

Page 268 GAO-24-105506 Agile Assessment Guide

Scrum is founded on three pillars that uphold the process. Table 28
outlines the three pillars.

Table 28: Scrum Principles

Principle Description
Transparency A common standard and understanding must be shared in order for the process to be visible. For

example, the definition of done documents a common definition between developers and product owners.
Inspection Artifacts are frequently inspected to detect any issues, but this inspection should not get in the way of

work.
Adaptation Adjustments should be made as soon as possible. Recurring events like sprint planning meetings and

retrospectives provide additional refinements and updates.

Source: GAO analysis of DOJ, Booz Allen Hamilton, and The Scrum Guide information. | GAO-24-105506

Scrum@Scale is a framework for managing multiple Scrum teams.
Scrum@Scale aims to minimize the bureaucracy of managing many
teams while prioritizing business goals.

With Scrum@Scale, staff are organized onto Scrum teams. As the
organization expands, it will add more Scrum teams. Scrum@Scale
organizes four to five Scrum teams into a new group, called a Scrum of
Scrums. Ideally, the Scrum of Scrums will be responsible for developing a
fully shippable product increment. The Scrum of Scums has a Scrum
Master and a Product Owner. If the organization expands even more, the
pattern is repeated, where four to five Scrum of Scrums are organized
into a Scrum of Scrum of Scrums. The Scrum@Scale framework also
defines an executive action team, that is responsible for creating an Agile
organization. Scrum@Scale delineates responsibilities for various areas,
such as identifying cross-team dependencies, removing organizational
impediments, and interfacing with non-Agile parts of the organization,
among others. Figure 24 shows the relationship between multiple scrum
teams and the executive action team.

Principles

Scrum@Scale
Overview

Structure

Appendix V: Common Agile Frameworks

Page 269 GAO-24-105506 Agile Assessment Guide

Figure 24: Representation of Scrum@Scale

Appendix V: Common Agile Frameworks

Page 270 GAO-24-105506 Agile Assessment Guide

Scrum@Scale is designed to incorporate the principles of Scrum:
transparency, inspection, and adaptation. These principles are
implemented in Scrum@Scale’s process. Scrum@Scale also describes
roles needed to implement Scrum values throughout the organizations.
For example, like in the Scrum framework, the Scrum of Scrums
framework has a Scrum Master and a Product Owner. Another example
is the role of the Executive Action Team, which is in charge of creating
Agile rules, procedures, and guidelines for the organization.

Scrumban combines both Scrum and Kanban, typically by using the
Scrum team structure with Kanban process principles. Scrumban is seen
as being more flexible than Scrum, but more structured than Kanban.

Similar to Scrum, Scrumban uses iterative planning, requirements
prioritization, and structured teams. From Kanban, Scrumban uses the
pull system, work-in-progress limits, and work visualization (Kanban
board).

Scrumban relies on the principles of Scrum and Kanban, as discussed in
the previous sections.

Principles

Scrumban
Overview

Structure

Principles

Appendix VI: Debunking Agile Myths

Page 271 GAO-24-105506 Agile Assessment Guide

Federal agencies continue to increase their adoption of Agile processes;
however, common misconceptions arise as individuals’ understanding of
Agile methods matures. This appendix, while not meant to be all
inclusive, describes and addresses several myths that are frequently
encountered.

The adaptive and iterative nature of Agile places less emphasis on the
need for documentation when compared to Waterfall development
methods, but that does not mean that no documentation is required. A
Waterfall development results in detailed documentation at the end of
each phase and the program requirements are not expected to change
much over time. However, elements of an Agile program continuously
evolve as additional information becomes available and customer needs
are further defined. As a result, Agile programs use an appropriate level
of documentation at the end of pre-defined time boxed periods in the
Agile development cadence (e.g. the iteration, release, or other major
milestone as defined by the program). In addition, in some cases, an
Agile approach might replace more formal documentation with information
embedded in program tools.

As with any approach, planning is a vital aspect that will greatly diminish
the effectiveness of a successful implementation if not done
appropriately. Waterfall development conducts extensive planning
upfront, while Agile spreads planning activities (e.g. what specific
functionality will be delivered when) more evenly throughout the program
life cycle. High-level planning is completed at the beginning of an Agile
program and is continuously elaborated on throughout the program as
new information becomes available. Continuous planning allows a
program to start much more quickly and make adjustment to the customer
and users’ needs as new information becomes available.

While Agile emphasizes that only near-term work is planned in detail
(such as just the next iteration), programs still define their overall goal in a
vision and typically plan the releases needed to satisfy the vision. This
plan might change or end early, but still provides a high-level view of the
work to be accomplished for the entire duration of the program.
Additionally, the potential for rework should be expected, and planned for,
as user requirements are refined.

Appendix VI: Debunking Agile Myths

Myth 1: Agile does
not require any
documentation

Myth 2: Agile does
not require planning

Appendix VI: Debunking Agile Myths

Page 272 GAO-24-105506 Agile Assessment Guide

Within an Agile approach, the team members working on the program
have autonomy over decisions about how to meet the needs of the
customer. However, most government organizations will find it
challenging to allow teams complete autonomy due to reporting and
accountability requirements. As a result, organizations transitioning to
Agile may need to modify their governance practices. This includes
incorporating clearly defined parameters (also called guard rails) within
which the team is free to make decisions and a clearly defined, fast-
moving governance process to make decisions that are outside the
team’s control.

For any program, it is almost always better if its participants are co-
located. Frequent human interaction is a necessary element of Agile, but
it is also necessary when employing Waterfall development methods.
Furthermore, a lack of co-location can be a serious impediment if a
program is poorly managed. However, distributed programs can still
succeed. As is true for any program type, distribution calls for careful
management and awareness around what needs to be executed
differently when some team members are not in the same location. For
example, there are many tools available that allow for close
communication between team members who are distributed throughout
various locations.

An Agile development team consists of small, cross-functional groups that
collaborate throughout the development process. This approach can be
equally effective on small programs and larger efforts working to develop
complex systems, since Agile teams typically “divide and conquer.” For
larger programs, this means that teams can be organized and focus on
separate components of system functionality or technical architecture.

For Agile programs of all sizes, but especially for the large and complex
programs, continuous integration of developed components on a daily, if
not more frequent, basis is a critical success factor. More specifically,
teams need to check in and test newly-developed code against the larger
solution within a production-like environment. In an Agile program with
typically short development iterations, parallel development efforts, and
frequent delivery of functionality, teams must integrate their work often to
detect and resolve errors as quickly as possible, with the ultimate goal of
being able to deploy at any time. If teams delay integration to just-prior-to-
release, they will likely run out of time to adequately perform testing,
address defects, and prepare the infrastructure. Teams should ensure
that they have the right automated build and test tools, and the
appropriate processes in place to support continuous integration.

Myth 3: Agile does
not require any
oversight

Myth 4: Agile works
only in co-located
environments

Myth 5: Agile only
works for small
programs with a
single team

Appendix VI: Debunking Agile Myths

Page 273 GAO-24-105506 Agile Assessment Guide

Deciding to use an Agile framework should occur on a program-by-
program basis. Agile is not necessarily the solution for all programs. For
example, not all programs will have flexible requirements, allowing trade-
offs to occur between scope with schedule and costs. With every software
development effort, learning to deal with issues as they arise is the key to
reducing the risks of failure.

Agile does not mean cobbling together an IT system with little or no
design or architectural thinking. Agile stresses simplifying upfront design,
not eliminating upfront design. The Agile Manifesto states that
“Continuous attention to technical excellence and good design enables
agility.”1 Furthermore, many Agile frameworks provide the tools and
techniques for the team to produce high-quality code. Many of the best
practices discussed in previous chapters are aimed specifically at
ensuring that the quality of the product being delivered is fit for the
purpose. Agile stresses simple, upfront design to focus on the foundation
and general structure of the software. For example, Agile developers
avoid building software features that may or may not be needed and
instead build for the current need and receive feedback in the iterative
delivery of software to the client. However, that does not mean that Agile
teams do not need high-level architecture to succeed. Rather, Agile
systems strive to keep their architecture simple and only add complexity
when it is needed.

Because Agile teams are self-organizing and its iterative process is
viewed as a way to mitigate the inherent risk in developing complex
software programs, a perception can develop that explicit risk
management practices are unnecessary. All programs face risk and
uncertainty, whose likelihood and potential impact should be examined.
For example, effective practices for Agile include developing initial plans
at a high level and updating these frequently as more is learned about the
program. While Agile emphasizes that teams will uncover risk via early
and frequent delivery of software, the potential impact of some issues,
such as technical debt or team size, should be considered sooner rather
than later.

1©2001-2023, Agile Manifesto authors https://agilemanifesto.org. Please see p. 9 of this
guide for the complete Agile Manifesto.

Myth 6: Using any
Agile framework will
automatically result in
program success

Myth 7: Agile does
not require an
architecture

Myth 8: Agile does
not require risk
analysis

https://agilemanifesto.org/

Appendix VI: Debunking Agile Myths

Page 274 GAO-24-105506 Agile Assessment Guide

A central tenet of Agile is to welcome change. As part of this, teams
practice rolling wave planning, a technique where only near-term work is
planned in detail. This helps to minimize the cost of changing plans, but
frequent changes can appear to be in conflict with the concept of
adhering to a baseline. However, welcoming change does not mean that
software is developed and delivered in an undisciplined or ad hoc
manner. A baseline should be created and approved in concert with a
rolling wave planning process, and it should contain enough detail to
enable a collaborative agreement between product owners and
developers without making schedule updates overly frequent or
cumbersome.

Another key principle is that working software should be the primary
measure of progress, so schedule trends displayed in burn down/burn up
charts are seen as lagging indicators. A key principle of Agile is that the
highest priority is to satisfy the customer through early and continuous
delivery of usable software, and teams typically develop and deliver
working software to the customer in time boxed iterations. These
iterations are guided by the vision, which establishes a high-level
definition of the cost, schedule, and scope goals for the program and
provides a basis for specifying expected outcomes for iterations. These
must have features that identify the program’s schedule baseline and, as
a result, developers have the ability to demonstrate the value provided by
features developed at the end of releases and how those features tie to
the program vision. As the schedule is updated with actual data and
revisions are made, updates can be documented in progress records
through various Agile metrics and a schedule narrative. Schedule trends
showing deviations from the baseline can be used to understand the need
for changes, whether to program execution or to the baseline itself, which
can be updated only if it is no longer a realistic portrayal of program
execution. This helps ensure that the baseline provides a good basis for
measuring and understanding progress and maintaining accountability.

Since Agile development is dynamic, some developers have claimed that
earned value management (EVM) is not well suited as a measurement
tool in an Agile environment. However, EVM is an important management
tool that provides performance measurement information for a program.
In the past, recommendations to eliminate EVM for Agile programs
claimed that it was not flexible enough to implement effectively. While
EVM tracks program performance to a fixed point in time, using an Agile
approach does not preclude the need for a disciplined approach for
performance measurement processes. This is especially true for
government Agile programs. While scope is flexible for an iteration, often

Myth 9: A schedule
baseline cannot be
reliably developed or
used for an Agile
software development
effort

Myth 10: Earned
value management is
not compatible with
Agile Programs

Appendix VI: Debunking Agile Myths

Page 275 GAO-24-105506 Agile Assessment Guide

scope is not flexible for the overall program. When the scope is not
flexible for the program, as assumed for Agile programs, then additional
expenditures and time may be needed to meet all requirements. A
tailored EVM approach, as discussed in chapter 7, can leverage EVM’s
benefits for Agile programs. Additionally, EVM is not tied to any specific
development methodology and does not prevent the use of other risk
management techniques like those used in Agile development.
Furthermore, Agile development can be used to incrementally deliver
functionality to the customer, while EVM provides a standard method for
measuring progress.

Appendix VII: Background for Case Studies
and Agile in Action

Page 276 GAO-24-105506 Agile Assessment Guide

Case studies used in this guide were taken from GAO reports and
highlight problems typically associated with Agile practices. These
particular examples were chosen to augment key points and lessons
learned that are discussed in the guide. Agile in Action examples feature
practices adopted by programs and organizations we interviewed that we
believe illustrate Agile key practices executed in an exemplary or
innovative way. The difference between a case study and an Agile in
Action example is that the Agile in Action examples are not based on
published GAO reports, but rather on our research, interviews, and by
self-reporting entities.

The material in the guide’s 22 case studies was drawn from the 14 GAO
reports described in this appendix. The material in the guide’s 7 Agile in
Action examples were drawn from eight site visits GAO made to various
organizations. Table 29 shows the relationship between published GAO
reports and case studies and the chapters in which the reports are cited.
The table is arranged by the order in which the case study appears in the
guide. Following the table, paragraphs describe the reports used (listed in
the same order as listed in the table).

Table 29 shows the relationship between the Agile in Action examples,
related organizations, and the chapters in which the organizations are
cited. The table is arranged by the order in which the case studies appear
in the guide. Following the table, paragraphs describe the case studies
used in this guide.

Table 29: Case Studies Drawn from GAO Reports Used in this Guide

Case Study GAO report number and main title Chapter
1 GAO-20-146: Space Command and Control 2
2 GAO-18-194: Defense Management 3
3, 20, 22 GAO-16-467: Immigration Benefits System 3, 8
4, 6, 7, 14, 16 GAO-20-213: Agile Software Development 3, 5
5 GAO-22-105068: Focused Training 3
8 GAO-19-136: DOD Space Acquisitions 3
9, 12 GAO-23-105920: Agile Adoption 3, 5
10 GAO-21-68: Updated Goals and Governance Enhanced the Joint Cyber Warfighting

Architecture
4

11 GAO-23-105670: Personnel Vetting 4
13, 21 GAO-18-46: TSA Modernization 5, 8
15 GAO-20-170SP: Homeland Security Acquisitions 5

Appendix VII: Background for Case Studies
and Agile in Action

Case studies

https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-22-105068
https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-23-105920
https://www.gao.gov/products/GAO-21-68
https://www.gao.gov/products/GAO-23-105670
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-20-170SP

Appendix VII: Background for Case Studies
and Agile in Action

Page 277 GAO-24-105506 Agile Assessment Guide

Case Study GAO report number and main title Chapter
17 GAO-20-267: Federal Guidance Revised to Reflect the Role of Contracting Personnel in

Software Development, from Social Security Contracting
6

18 GAO-19-164: FEMA Grants Modernization 7
19 GAO-23-106047: Earned Value Management Data Provides Limited Visibility 7

Source: GAO. | GAO-24-105506

Case Study 1: From Space Command and Control: Comprehensive
Planning and Oversight Could Help DOD Acquire Critical Capabilities and
Address Challenges, GAO-20-146, October 30, 2019.

Since the early 1980s, the Air Force has been working to modernize and
consolidate its space command and control systems. The past three
programs to attempt this have ended up significantly behind schedule and
over budget. They also left key capabilities undelivered.

This report describes the status of DOD’s newest efforts to develop space
command and control capabilities and identifies challenges the Air Force
faces in bringing them to fruition.

We found the Space C2 program is facing a number of challenges and
unknowns, from management issues to technical complexity. Additionally,
DOD officials have not yet determined what level of detail is appropriate
for acquisition planning documentation for Agile software programs. They
are also not certain about the best way to provide oversight of these
programs but are considering using assessments by external experts.
These knowledge gaps run counter to DOD and industry best practices
for acquisition and put the program at risk of not meeting mission
objectives. Additionally, software integration and cybersecurity challenges
exist, further complicating program development. The Air Force has
efforts underway to mitigate some of these challenges in the near term,
but, until the program develops a comprehensive acquisition strategy to
more formally plan the program, it is too early to determine whether these
efforts will help to ensure long-term program success.

GAO reported its findings on October 30, 2019 in Space Command and
Control: Comprehensive Planning and Oversight Could Help DOD
Acquire Critical Capabilities and Address Challenges, GAO-20-146

Case Study 2: From Defense Management: DOD Needs to Take
Additional Actions to Promote Department-Wide Collaboration,
GAO-18-194, February 28, 2018.

https://www.gao.gov/products/GAO-20-267
https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-23-106047
https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-18-194

Appendix VII: Background for Case Studies
and Agile in Action

Page 278 GAO-24-105506 Agile Assessment Guide

Although the Department of Defense (DOD) maintains military forces with
unparalleled capabilities, it continues to confront organizational and
management challenges that hinder collaboration and integration across
the department. To address these challenges, section 911 of the National
Defense Authorization Act (NDAA) for Fiscal Year 2017 directed the
Secretary of Defense to issue an organizational strategy that identifies
critical objectives which span multiple functional boundaries and that
would benefit from the use of cross-functional teams.

This report evaluates the extent to which DOD, in accordance with
statutory requirements and leading practices, has developed and issued
an organizational strategy, established Secretary of Defense-empowered
cross-functional teams, and provided associated training for Office of the
Secretary of Defense leaders. We found that DOD has implemented
some of the statutory requirements outlined in section 911 of the NDAA to
address organizational challenges but could do more to promote
department-wide collaboration. Specifically, DOD established one cross-
functional team to address the backlog on security clearances and
developed draft guidance for cross-functional teams that addresses six of
seven required statutory elements and incorporates five of eight leading
practices that GAO has identified for effective cross-functional teams.
Fully incorporating all statutory elements and leading practices will help
the teams consistently and effectively address DOD’s strategic objectives.

GAO reported its findings on February 28, 2018 in Defense Management:
DOD Needs to Take Additional Actions to Promote Department-Wide
Collaboration, GAO-18-194

Case Studies 3, 20, 22 From Immigration Benefits System: U.S.
Citizenship and Immigration Services Can Improve Program
Management, GAO-16-467, July 7, 2016.

Each year, the U.S. Citizenship and Immigration Service (USCIS)
processes millions of applications for persons seeking to study, work,
visit, or live in the United States, and for persons seeking to become a
U.S. citizen. In 2006, USCIS began the Transformation Program to
enable electronic adjudication and case management tools that would
allow users to apply and track their applications online. In 2012, to
address performance concerns, USCIS changed its acquisition strategy
to improve system development.

In May 2015, GAO reported that USCIS expected the program to cost up
to $3.1 billion and be fully operational by March 2019. This includes more

https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-16-467

Appendix VII: Background for Case Studies
and Agile in Action

Page 279 GAO-24-105506 Agile Assessment Guide

than $475 million that was invested in the initial version of the program’s
key case management component, USCIS’s Electronic Immigration
System (USCIS ELIS), which has since been decommissioned. This
report evaluates the extent to which the program is using information
technology program management leading practices.

We found software development and systems integration and testing for
USCIS ELIS have not consistently been managed in line with the
program’s policies and guidance or with leading practices. Regarding
software development, the Transformation Program has produced some
software increments, but is not consistently following its own guidance
and leading practices. The software development model (Agile) adopted
by the USCIS Transformation Program in 2012 includes practices aimed
at continuous, incremental release of segments of software. Important
practices for Agile defined in program policies, guidance, and leading
practices include ensuring that the software meets expectations prior to
being deployed, teams adhere to development principles, and
development outcomes are defined.

We also found the Transformation Program has established an
environment that allows for effective systems integration and testing and
has planned for and performed some system testing. However, the
program needs to improve its approach to system testing to help ensure
that USCIS ELIS meets its intended goals and is consistent with agency
guidance and leading practices. Among other things, the program needs
to improve testing of the software code that comprises USCIS ELIS and
ensure its approaches to interoperability and end user testing,
respectively, meet leading practices. Collectively, these limitations have
contributed to issues with USCIS ELIS after new software is released into
production.

GAO reported its findings on July 7, 2016 in Immigration Benefits System:
U.S. Citizenship and Immigration Services Can Improve Program
Management, GAO-16-467

Case Studies 4, 6, 7, 14, 16: From Agile Software Development: DHS
Has Made Progress in Implementing Leading Practices, but Needs to
take Additional Actions, GAO-20-213, June 1, 2020.

Many of the Department of Homeland Security’s (DHS) major acquisition
programs have taken longer than expected to develop or failed to deliver
the desired value. In April 2016, to help improve the department’s IT
acquisition, and management, DHS identified Agile software development

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-20-213

Appendix VII: Background for Case Studies
and Agile in Action

Page 280 GAO-24-105506 Agile Assessment Guide

as the preferred approach for all of its IT programs and projects. This
resulted in five Agile pilot programs. Each pilot program was overseen by
a component integrated program team. Collectively, the first pilot
programs were also overseen and supported by a DHS integrated
program team. In April 2016, the department issued an Agile instruction,
which identified Agile software development as the preferred approach for
all DHS programs and projects that are to deliver an IT, or embedded-IT
capability. The department also set an expectation for its component
Chief Information Officers (CIO) to develop plans to increase the use of
Agile development and justify any major IT programs that did not intend to
use Agile development practices. Many DHS programs were already
using Agile or similar incremental development methods before the
department identified it as the preferred approach.

GAO found that DHS has addressed four of nine leading practices for
adoption Agile software development. For example, the department has
modified its acquisition policies to support Agile development methods.
However, it needs to take additional steps to, among other things, ensure
all staff are appropriately trained and establish expectations for tracking
software code quality. By fully addressing leading practices, DHS can
reduce the risk of continued problems in developing and acquiring
current, as well as, future IT systems.

GAO reported its findings on June 1, 2020 in Agile Software
Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213

Case Study 5: From U.S. Courts: Action Needed to Improve IT
Management and Establish a Chief Information Officer, GAO-22-105068,
July 28, 2022.

The Administrative Office of the U.S. Courts—a judicial branch agency
that, among other things, provides IT support services to federal courts—
relies on IT systems to manage information to support its lines of
business. These lines of business include case management, court
administration, and probation and pretrial services.

GAO was asked to review the Office’s IT management. This report
evaluates, among other things, the extent to which the Office (1)
implemented selected leading IT workforce planning and management
practices, (2) implemented selected best practices for planning and
managing IT projects, and (3) has a CIO with the authority to exercise

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-22-105068

Appendix VII: Background for Case Studies
and Agile in Action

Page 281 GAO-24-105506 Agile Assessment Guide

enterprise control and oversight of the Office’s IT workforce and project
portfolio.

To do so, GAO assessed agency documentation against 12 selected
leading workforce management practices within four topic areas. It also
evaluated 23 best practices for managing the Office’s three largest IT
acquisition projects. In addition, GAO interviewed officials from the Office
about the agency’s management of its IT workforce and projects.

GAO found that the Office substantially implemented practices in the
performance management area, but was less successful in recruitment
and hiring and training and development. For example, although the
Office identified gaps in the cybersecurity skills of its IT workforce, it did
not have a recruiting strategy for IT staff and did not establish a training
program for its IT staff. Agency officials said that they did not establish
such a training program because the agency’s departments are to
address training on an individual or project basis. Fully addressing
practices in these areas would help ensure that it has the knowledge and
skills to tackle pressing IT issues.

GAO reported its findings on July 28, 2022 in U.S. Courts: Action Needed
to Improve IT Management and Establish a Chief Information Officer,
GAO-22-105068

Case Study 8: from DOD Space Acquisitions: Including Users Early and
Often in Software Development Could Benefit Programs, GAO-19-136,
March 18, 2019.

Starting in 2019 and over a 5 year period, the Department of Defense
(DOD) planned to spend over $65 billion on its space system acquisitions
portfolio, including many systems that rely on software for key
capabilities. However, software-intensive space systems have had a
history of significant schedule delays and billions of dollars in cost growth.

Senate and House reports accompanying the National Defense
Authorization Act for Fiscal Year 2017 contained provisions for GAO to
review challenges in software-intensive DOD space programs. This report
addresses, among other things, (1) the extent to which these programs
have involved users; and (2) what software-specific management
challenges, if any, programs faced.

To do this work, GAO reviewed four major space defense programs with
cost growth or schedule delays caused, in part, by software. GAO

https://www.gao.gov/products/GAO-22-105068
https://www.gao.gov/products/GAO-19-136

Appendix VII: Background for Case Studies
and Agile in Action

Page 282 GAO-24-105506 Agile Assessment Guide

reviewed applicable statutes and DOD policies and guidance that
identified four characteristics of effective user engagement. GAO
reviewed program documentation; and interviewed program officials,
contractors, and space systems users. GAO also analyzed program
metrics, test and evaluation reports, and external program assessments.

GAO found that the four major DOD software-intensive space programs
that GAO reviewed struggled to effectively engage system users. These
programs are the Air Force’s Joint Space Operations Center Mission
System Increment 2 (JMS), Next Generation Operational Control System
(OCX), Space-Based Infrared System (SBIRS); and the Navy’s Mobile
User Objective System (MUOS). These ongoing programs are estimated
to cost billions of dollars, have experienced overruns of up to three times
originally estimated cost, and have been in development for periods
ranging from 5 to over 20 years. Previous GAO reports, as well as DOD
and industry studies, have found that user involvement is critical to the
success of any software development effort. For example, GAO
previously reported that obtaining frequent feedback is linked to reducing
risk, improving customer commitment, and improving technical staff
motivation. However, the programs GAO reviewed often did not
demonstrate characteristics of effective user engagement that are
identified in DOD policy and statute.

GAO reported its findings on March 18, 2019 in DOD Space Acquisitions:
Including Users Early and Often in Software Development Could Benefit
Programs, GAO-19-136

Case Studies 9, 12: From Space Command and Control: Improved
Tracking and Reporting Would Clarify Progress Amid Persistent Delays,
GAO-23-105920, June 8, 2023.

Between 2000 and 2022, the Department of the Air Force spent over $1.7
billion to replace its systems that track and control satellites. These
systems are well beyond their expected service lives.

DOD began the Space Command and Control (C2) program in 2018 to
improve space command and control activities. Congress included a
provision in statute for GAO to review annual Air Force Reports on Space
C2. This report addresses (1) challenges to Space C2’s development
efforts and how the program is addressing them; and (2) the extent to
which the Air Force’s 2022 annual report included required elements and,
with additional program reporting, provided information for oversight.

https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-23-105920

Appendix VII: Background for Case Studies
and Agile in Action

Page 283 GAO-24-105506 Agile Assessment Guide

To conduct this work, GAO analyzed Space C2 program documentation
of requirements, Agile software development practices, and its cost
estimate. GAO then compared this documentation against leading
practices in GAO’s Agile and Cost Estimating Guides. GAO also
assessed the 2022 Space C2 annual report against statutory
requirements and, with other program reporting, against leading practices
in GAO’s Agile Guide. GAO also interviewed officials from the DOD, Air
Force, and Space Force.

GAO found that Space systems—such as satellites—are vital to the
military’s ability to project combat power, collect intelligence, navigate,
and communicate across the globe. In an increasingly crowded space
domain, threats to military space systems are also growing. Space
command and control is the ability for military commanders to make
timely, strategic decisions, take tactical actions to meet mission goals,
and counter threats to U.S. space assets. This decision-making depends
on underlying data collection and analysis. The Space Command and
Control (Space C2) program is the Department of Defense’s (DOD) latest
software-intensive system intended to provide this capability.

GAO reported its findings on June 8, 2023 in Space Command And
Control: Improved Tracking and Reporting Would Clarify Progress Amid
Persistent Delays, GAO-23-105920

Case Study 10: From Defense Acquisitions: Joint Cyber Warfighting
Architecture Would Benefit from Defined Goals and Governance,
GAO-21-68, November 19, 2020.

Cyberspace is a growing, human-made environment that touches many
parts of life, including education, economic development, health, and
other public services. For DOD, cyberspace is as important as the
traditional land, sea, air, and space warfighting domains. To integrate
these disparate cyber systems into a more cohesive capability, U.S.
Cyber Command introduced an overarching vision for cyber capabilities
known as the Joint Cyber Warfighting Architecture (JCWA).

The Senate Armed Services Committee, in Senate Report 116-48,
accompanying the National Defense Authorization Act for Fiscal Year
2020, included a provision for GAO to review the status of the JCWA.
This report (1) describes the JCWA concept, systems, and planned
capabilities; and (2) assesses the extent to which DOD has defined
interoperability goals and a governance structure to guide JCWA cyber
system acquisitions.

https://www.gao.gov/products/GAO-23-105920
https://www.gao.gov/products/GAO-21-68

Appendix VII: Background for Case Studies
and Agile in Action

Page 284 GAO-24-105506 Agile Assessment Guide

To do this work, GAO reviewed acquisition program documents and joint
cyber warfighting requirements information. GAO conducted interviews
with DOD officials from key cyber warfighting organizations, including
Cyber Command, as well as JCWA program offices and stakeholders.

GAO found that U.S. Cyber Command created the JCWA as a concept to
integrate cyber warfighting systems. Department of Defense (DOD)
officials told GAO that the JCWA is to serve as a guiding concept for
cyber warfighting acquisitions and investment decisions, rather than a
traditional architecture that DOD’s systems engineering guidance states
would address functions, relationships, and dependencies of constituent
systems. As of August 2020, the JCWA consisted of a diagram of
systems, including four acquisition programs and the cyber tools and
sensors that support cyber warfighting. Three of these programs were in
development before Cyber Command began efforts to link them together
to create a more integrated set of systems.

Although the primary element of the JCWA concept, according to Cyber
Command officials, is the interoperability and information sharing among
these systems, Cyber Command has not defined JCWA interoperability
goals for constituent systems. The lack of defined goals is due in part to
most programs now included in the JCWA being in development prior to
the concept being initiated. However, goals are essential to ensuring that
operators have system capabilities as anticipated. Cyber Command
recently established two new offices that would be responsible for
prioritizing JCWA program acquisition requirements but as of August
2020, had not yet assigned roles and responsibilities for these key offices.
Until Cyber Command develops a governance structure for the new
offices with defined roles and responsibilities, it risks delays in providing
needed joint cyber warfare capabilities.

GAO reported its findings on November 19, 2020 in Defense Acquisitions:
Joint Cyber Warfighting Architecture Would Benefit from Defined Goals
and Governance, GAO-21-68

Case Study 11: From Personnel Vetting: DOD Needs a Reliable
Schedule and Cost Estimate for the National Background Investigation
Services Program, GAO-23-105670, August 17, 2023.

U.S. government personnel vetting processes, such as background
investigations, rely on information technology systems to process and
validate data on millions of federal employees and contractor personnel.
In 2016, DOD assumed responsibility for developing new systems

https://www.gao.gov/products/GAO-21-68
https://www.gao.gov/products/GAO-23-105670

Appendix VII: Background for Case Studies
and Agile in Action

Page 285 GAO-24-105506 Agile Assessment Guide

following a 2015 cybersecurity incident that compromised data from
Office of Personnel Management systems. DOD is developing the
National Background Investigation Services (NBIS) system to replace
those legacy systems.

House Report 117-118, accompanying a bill for the National Defense
Authorization Act for Fiscal Year 2022, includes a provision for GAO to
evaluate the NBIS program. GAO assessed (1) the status of NBIS system
development, and the reliability of the schedule and cost estimate for the
NBIS program; and (2) the extent to which DCSA is engaging
stakeholders in the development of NBIS system requirements and
capabilities.

The DOD, through its Defense Counterintelligence and Security Agency
(DCSA), conducts personnel vetting for the majority of the federal
workforce. Since 2016, DOD has delivered some capabilities through a
new information technology system—the National Background
Investigation Services (NBIS) system—intended to support all phases of
personnel vetting. NBIS system capabilities, once fully deployed, should
enable users to complete electronic forms, manage investigations, record
decisions, and more. However, GAO found that DOD lacks a reliable
schedule and cost estimate for NBIS.

DCSA has deployed some NBIS system capabilities, such as an
eApplication, to collect the necessary data to begin a background
investigation. However, NBIS was originally slated to be fully operational
in 2019. In 2020, DCSA revised NBIS program milestones, but it
continues to face delays. DCSA now projects that legacy systems will be
decommissioned by the end of 2024. In 2021, GAO recommended that
DCSA develop a reliable schedule, which DCSA has not done. The lack
of progress in addressing schedule weaknesses could further delay NBIS
implementation and the planned replacement of legacy systems.
Moreover, GAO found the NBIS program’s cost estimate from 2022 is not
reliable, meaning that DCSA may be unable to accurately project NBIS
costs. Given that DOD has spent over a half a billion dollars on NBIS
since 2016, a reliable cost estimate would help ensure that it is collecting
the data necessary to match NBIS requirements to its budget and reduce
risks of cost overruns that may hinder the program’s progress.

Case Studies 13, 21: From TSA Modernization: Use of Sound Program
Management and Oversight Practices Is Needed to Avoid Repeating Past
Problems, GAO-18-46, October 17, 2017.

https://www.gao.gov/products/GAO-18-46

Appendix VII: Background for Case Studies
and Agile in Action

Page 286 GAO-24-105506 Agile Assessment Guide

TSA conducts security threat assessment screening and credentialing
activities for millions of workers and travelers in the maritime, surface,
and aviation transportation industries that are seeking access to
transportation systems. In 2008, TSA initiated the Technology
Infrastructure Modernization (TIM) program to enhance the sophistication
of its security threat assessments and to improve the capacity of its
supporting systems. However, the program experienced significant cost
and schedule overruns, and performance issues, and was suspended in
January 2015 while TSA established a new strategy. The program was
rebaselined in September 2016 and is estimated to cost approximately
$1.27 billion and be fully operational by 2021 (about $639 million more
and 6 years later than originally planned).

We were asked to review the TIM program’s new strategy. This report
determined, among other things, the extent to which TSA implemented
selected key practices for transitioning to Agile software development for
the program. We found the program only fully implemented two of six
leading practices necessary to ensure successful Agile adoption.
Specifically, the Department of Homeland Security (DHS) and TSA
leadership fully committed to adopt Agile and TSA provided Agile training.
Nonetheless, the program had not defined key roles and responsibilities,
prioritized system requirements, or implemented automated capabilities
that are essential to ensuring effective adoption of Agile.

GAO reported its findings on October 17, 2017 in TSA Modernization:
Use of Sound Program Management and Oversight Practices is Needed
to Avoid Repeating Past Problems, GAO-18-46

Case Study 15: From Homeland Security Acquisitions: Outcomes Have
Improved but Actions Needed to Enhance Oversight of Schedule Goals,
GAO-20-170SP, December 19, 2019.

Each year, the Department of Homeland Security (DHS) invests billions of
dollars in a diverse portfolio of major acquisition programs to help execute
its many critical missions. DHS plans to more than $10 billion on these
programs in fiscal year 2020 alone. DHS’s acquisition activities are on
GAO’s High Risk List, in part, because of management and funding
issues. This report, GAO’s fifth review, addresses the extent to which
DHS’s major acquisition programs are on track to meet their schedule
and cost goals and current program baselines trace to key acquisition
documents.

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-20-170SP

Appendix VII: Background for Case Studies
and Agile in Action

Page 287 GAO-24-105506 Agile Assessment Guide

To help manage its multi-billions dollar acquisition investments, DHS has
established policies and processes for acquisition management,
requirements development, test and evaluation, and resource allocation.
The department uses these policies and processes to deliver systems
that are intended to close critical capability gaps, helping enable DHS to
execute its missions and achieve its goals.

Traceability, which is called for in DHS policy and GAO scheduling best
practices, helps ensure that program goals are aligned with program
execution plans, and that a program’s various stakeholders have an
accurate and consistent understanding of those plans and goals.

Appendix I of this report presents individual assessments for each of the
29 programs we reviewed. Each assessments presents information
current as of August 2019. They include standard elements, such as an
image, a program description, and summaries of the program’s progress
in meeting cost and schedule goals, performance and testing activities,
and program management-related issues, such as staffing.

GAO reported its findings on December 19, 2019 in Homeland Security
Acquisitions: Outcomes Have Improved but Actions Needed to Enhance
Oversight of Schedule Goals, GAO-20-170SP

Case Study 17: From Social Security Contracting: Relevant Guidance
Should be Revised to Reflect the Role of Contracting Personnel in
Software Development, GAO-20-627 July 31, 2020.

The Social Security Administration (SSA) is responsible for delivering
services that touch the lives of virtually every American. To do so, SSA
relies on a variety of products and services, including information
technology (IT) systems. SSA obligates approximately $1.5 billion
annually to procure goods and services, 65 percent of which are IT-
related.

GAO was asked to assess how SSA implements its contracting and
acquisition processes. This report examines: (1) how SSA awards and
oversees contracts for products and services, and (2) the extent to which
SSA has updated its guidance regarding the role of contracting personnel
in software development efforts.

GAO reviewed SSA’s acquisition policies, interviewed contracting
officials, and reviewed a non-generalizable sample of 27 high- and lower
value contracts and orders with dollars obligated in fiscal years 2014

https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-627

Appendix VII: Background for Case Studies
and Agile in Action

Page 288 GAO-24-105506 Agile Assessment Guide

through 2018. GAO also examined data from fiscal years 2015-2019 to
determine what SSA contracted for and reviewed IT guidance. GAO
compared SSA’s practices to leading practices for Agile software
development with respect to the roles of contracting personnel.

GAO found that the approach followed by SSA in awarding and
overseeing contracts generally aligns with the requirements GAO
reviewed. For the 27 contracts and orders GAO reviewed, SSA varied its
approach depending on the contract type used and the dollar value. For
example, one of SSA’s written acquisition plans acknowledged the risks
to the government associated with time-and-materials contracts. From
fiscal year 2015 through 2019, SSA obligated 22.7 percent of its contract
dollars on time-and-material contracts compared with 10.5 percent at
other civilian agencies. In addition, from fiscal year 2015 through 2019,
the rate at which SSA used competitive award procedures to achieve the
best value for the agency increased by nearly 20 percentage points. This
increase was the result of the agency’s increased use of competition in its
contracting for information technology (IT).

SSA relies heavily on IT resources to support the administration of its
programs and related activities. During fiscal years 2015 through 2019,
about 65 percent of the $8.3 billion in contract obligations were for IT
goods and services compared with about 16 percent at other civilian
agencies.

SSA adopted an Agile approach to software development for some of its
critical IT programs in 2015. An Agile approach to software development
involves incremental improvements to software rather than the more
traditional single-track approach. Subsequently, SSA developed an IT
modernization plan in 2017 that states SSA will use an Agile
methodology. GAO’s draft Agile Assessment Guide states that an
organization’s acquisition policies and guidance should support an Agile
development approach and identify clear roles for contracting personnel,
since this is a different approach than federal agencies previously used.
However, GAO found SSA’s acquisition handbook does not specifically
identify a role for contracting personnel with respect to contracts and task
orders involving Agile, which GAO has identified as a leading practice.
Identifying a role for contracting personnel in the Agile process should
better position SSA to achieve its IT modernization goals and provide
appropriate levels of oversight.

Appendix VII: Background for Case Studies
and Agile in Action

Page 289 GAO-24-105506 Agile Assessment Guide

GAO reported its findings on July 31, 2020 in Social Security Contracting:
Relevant Guidance Should be Revised to Reflect the Role of Contracting
Personnel in Software Development, GAO-20-627.

Case Study 18: From FEMA Grants Modernization: Improvements
Needed to Strengthen Program Management and Cybersecurity,
GAO-19-164, April 9, 2019.

The Federal Emergency Management Agency (FEMA), a component of
DHS, annually awards billions of dollars in grants to help communities
prepare for, mitigate the effects of, and recover from major disasters.
However, FEMA’s complex IT environment supporting grants
management consists of many disparate systems. In 2008, the agency
attempted to modernize these systems but experienced significant
challenges. In 2015, FEMA initiated a new endeavor—the Grants
Management Modernization (GMM) program aimed at streamlining and
modernizing the grants management IT environment.

GAO was asked to review the GMM program. We found GMM’s initial
May 2017 cost estimate no longer reflected current assumptions about
the program. FEMA officials stated in December 2018 that they had
completed a revised cost estimate, but it was undergoing departmental
approval. We also found GMM’s program schedule was inconsistent with
leading practices; of particular concern was that the program’s final
delivery date of September 2020 was not informed by a realistic
assessment of GMM development activities, and rather was determined
by imposing an unsubstantiated delivery date.

GAO reported its findings on April 9, 2019 in FEMA Grants
Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164

Case Study 19: From F-35 Joint Strike Fighter: More Actions Needed to
Explain Cost Growth and Support Engine Modernization Decision,
GAO-23-106047, May 30, 2023.

The F-35 Lightning II Joint Strike Fighter program is DOD’s most
expensive weapon system program. DOD estimates it will cost nearly
$1.7 trillion to buy, operate, and sustain the aircraft and systems over its
lifetime. DOD is also assessing options for modernizing its engine.

Congress included provisions in three statutes for GAO to review the F-35
program and a Senate report included another. This report (1) identifies

https://www.gao.gov/products/GAO-20-627
https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-23-106047

Appendix VII: Background for Case Studies
and Agile in Action

Page 290 GAO-24-105506 Agile Assessment Guide

the F-35’s progress toward full-rate production, (2) assesses DOD’s F-35
modernization effort (known as Block 4), and (3) assesses DOD’s
approach for modernizing its engine and thermal management system.
GAO reviewed program, DOD, and contractor documentation on these
topics and interviewed program, DOD, and contractor representatives.
GAO assessed the program’s progress against its own plans. GAO also
applied its cost estimating and technology readiness leading practices, as
appropriate.

GAO found that the F-35 program continues to experience schedule
delays, cost growth, and late deliveries. Program delays in completing the
F-35 simulator continue to prevent the DOD from completing the testing
required to demonstrate that the F-35 is ready for full manufacturing
rates, even though the program is already producing over 125 aircraft per
year.

The F-35 program’s total procurement costs have increased by $13.4
billion since the last cost estimate in 2019. This is, in part, due to DOD
spreading out aircraft purchases and adding years to its delivery
schedule. Contractors also continue to have challenges with delivering
aircraft and engines on time, but they are working to address these
issues.

Further, DOD is 5 years into a development effort to modernize the F-35’s
capabilities. This effort, known as Block 4, is experiencing developmental
delays for important technology updates. Block 4 costs also grew to $16.5
billion, an increase of more than $1 billion since GAO last reported.

GAO reported its finding on May 30, 2023 in F-35 Joint Strike Fighter:
More Actions Needed to Explain Cost Growth and Support Engine
Modernization Decision, GAO-23-106047.

Agile in Action examples were developed through various site visits made
by GAO during the course of developing this guide. While they are not
based on a previously published GAO report, they were developed by
interviewing agency officials, reviewing documentation, and site visits to
observe Agile being used. To verify that the information presented in
these examples was complete, accurate, and up-to-date, we provided
each organization with a draft version of our summary analysis.

Agile in Action

https://www.gao.gov/products/GAO-23-106047

Appendix VII: Background for Case Studies
and Agile in Action

Page 291 GAO-24-105506 Agile Assessment Guide

Table 30: Agile in Action Examples Drawn from GAO Interviews

Agile in Action Agency/company visited Chapter
1 Census Bureau 3
2, 6 NNSA G2 5, 7
3 GSA (18F), U.S. Air Force 6
4 GAO 6
5 DHS HQ 7
7 Agility Health 8

Source: GAO. | GAO-24-105506

Appendix VIII: Specialists Who Helped Develop
this Guide

Page 292 GAO-24-105506 Agile Assessment Guide

The list in this appendix names the knowledgeable specialists who helped
us develop this guide, along with their organizations. The list includes the
names of those who made significant contributions to the Agile Guide.
These specialists attended and participated in working group meetings,
provided text or graphics, submitted comments, and hosted research site
visits.

Organization Specialist
Abba Consulting Wayne Abba
ADEPT Force Group Robin Pulverenti
Agile Infusion, LLC Bob Schatz
Agile Transformation, Inc. Sally Elata
Artemis Consulting Rohit Gupta
Augur Consulting Tyler Duran
 Obai Kamara
 Sam Kitchin
 Adam Martin
 Max Pessel
 Robel Semunegus
 Ryan Webster
Boeing Jonathan Kiser
 Jerry Starling
Booz Allen Hamilton Ryne Peterson
California Department of Technology Jeffery Porcar
 Crystal Taylor
Census Bureau Linda Flores-Baez
 Jeff Harris
Cerner Corporation Stacy Ladwig
CGI Federal Ed Canoles
Collins Aerospace Jack Barnes
Commodity Futures Trading Commission Matthew Kennedy
Court Services and Offender Supervision
Agency

Anthony Burley

David Consulting Group Mike Harris
Department of Defense Lawrence Asch
 Harry Culclasure
Department of Education Trey Wiesenburg
Department of Energy Ty Deschamp
 Kim Hobson

Appendix VIII: Specialists Who Helped
Develop this Guide

Appendix VIII: Specialists Who Helped Develop
this Guide

Page 293 GAO-24-105506 Agile Assessment Guide

Organization Specialist
 Cathy Toth
 Brady Wenrich
 Tim Wynn
Department of Homeland Security Katherine Mann
Department of Justice Robert Kachursky
Excella Consulting Patrick McConnell
 Dane Weber
Genesis Consulting Beth Hatter
General Services Administration Zachary Cohn
 Kendrick Daniel
 Ashley Owens
Humphrey’s and Associates Denise Jarvie
IBM Myke Traver
Independent Consultant Wendy Hilton
Intel Sam Caldwell
 Leo Monford
Internal Revenue Service Jerome Frese
International Council on Systems
Engineering (INCOSE)

Phyllis Marbach

Leidos Andrea Nibert
 Phil Magrogan
Library of Congress Robin Wiley
Macro Solutions Todd Hager
MITRE Hassib Amiryar
 Tony Curington
National Archives and Records
Administration

Sherli Nambiar

NASA/Marshall Space Flight Center (MSFC) Joe Fischetti
National Geospatial-Intelligence Agency James Barclay
National Science Foundation Thomas Gulbransen
 Manik Naik
Northrop Grumman Ray Bollas
 Eugene Nkomba
 Paul Solomon (retired)
Naval Post Graduate School Karen Mislick
Office of Management and Budget Jim Wade
Olde Stone Consulting John Driessnack

Appendix VIII: Specialists Who Helped Develop
this Guide

Page 294 GAO-24-105506 Agile Assessment Guide

Organization Specialist
Program Management Institute (PMI),
Madrid Chapter

Mario Coquillat

Prometheus Consulting Harold Affo
Radus Software Sudi Sankavaram
Scaled Agile team Steve Mayner
Software Engineering Institute Suzanne Miller
Space Metrics Susan Barton
Sway Digital and Data Eric Christoph
TekNirvana Tarak Modi
TeraThink Corporation Michael Staab

United States Air Force Michael You
United States Digital Services Florence Kasule
 Jason Kattman
United States Patent and Trade Office Carol Eakins
 Victoria Figaro
 Kris Hillstrom
 John Owens
Vario Partners Craeg Strong
Vergys, LLC Greg Mantel
Vidya, LLC Neil Chaudhuri
Vytal Solutions Laura Bier

Source: GAO. I GAO-24-105506

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 295 GAO-24-105506 Agile Assessment Guide

Brian Bothwell, Director, Science Technology Assessment and Analytics
(STAA), at (202) 512-6888 or bothwellb@gao.gov

Carol Harris, Director, Information Technology and Cybersecurity (ITC), at
(202) 512-4456 or harriscc@gao.gov

Emile Ettedgui, Senior Operations Research Analyst, STAA
Michael Holland, Assistant Director, ITC
Jennifer Leotta, Assistant Director, STAA

Mat Bader, Senior Information Technology Analyst
Jenn Beddor, Senior Systems Engineer
Amita Bajwa, Systems Analyst
Mark Braza, Assistant Director
Erin Carson, Assistant Director
Juaná Collymore, Senior Operations Research Analyst
Jennifer Echard, Senior Analyst
Brian Fersch, Senior Analyst
Tim DiNapoli, Managing Director
Nancy Glover, Senior Communications Analyst
Mark Kuykendall, Communications Analyst
William Laing IV, Senior Operations Research Analyst
Amy Pereira, Senior Attorney
Carl Ramirez, Assistant Director
Joseph Rando, Visual Communications Analyst
Ben Wilder, Senior Operations Research Analyst
Wes Wilhelm, Senior Analyst

Appendix IX: GAO Contacts and Staff
Acknowledgments

GAO Contacts

Other Leadership on
this Project

Key Contributors

mailto:bothwellb@gao.gov
mailto:harriscc@gao.gov

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 296 GAO-24-105506 Agile Assessment Guide

Agile Alliance. Agile Glossary. Accessed March 5, 2020.
https://www.agilealliance.org/agile101/agile-glossary/.

Agile Genesis. “The Hub of the SM Cycle: The Executive Action Team
(EAT).” Accessed July 21, 2023.
https://www.agilegenesis.com/scrum-at-scale-executive-action-team#:~:te
xt=This.

Alleman, Glen B., and Michael Henderson. “Making Agile Development
Work in a Government Contracting Environment: Measuring Velocity with
Earned Value.” Salt Lake City, Utah: Agile Development, June 2003.

Arell, Ray, Jens Coldeway, and Jorgen Heselberg. “Characteristics of
Agile Organizations.” Agile Alliance. Accessed March 24, 2017.
https://www.agilealliance.org/characteristics-of-agile-organizations/.

Barclay, Jim, and Jon Ruark. “Top 10 Agile Questions to Ask as a Senior
Manager”. National Geospatial-Intelligence Agency: July 25, 2016.

Bashir, Salma. “Team Facilitation.” (October 30, 2009.) Accessed March
5, 2020. from https://www.slideshare.net/cococorina/team-facilitation.

Bellomo, Stephany, and Carol Woody. “DOD Information Assurance and
Agile: Challenges and Recommendations Gathered Through Interviews
with Agile Program Managers and DOD Accreditation Reviewers.”
Pittsburgh, Pennsylvania: Carnegie Mellon University, Software
Engineering Institute, November 2012.

Bier, L, and others. “Measuring Earned Value in an Agile World.” Binder
Dijker Otte (BDO), Consultants to Government and Industry (CGI), &
Deltek. (n.d.).

Booz Allen Hamilton. Booz Allen Agile Playbook, version 2.0. McLean,
Virginia: Booz Allen Hamilton, June 2016.

California Department of Technology. Understanding Agile, version 1.0.
Sacramento, California: Project Mangement Office, December 5, 2016.

Carnahan, Robin, Randy Hart, and Waldo Jaquith. “De-Risking custom
technology projects.” General Services Administration. August 5, 2019.
https://github.com/18F/technology-budgeting/blob/master/handbook.md#b
asic-principles-of-modern-software-design.

References

https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilegenesis.com/scrum-at-scale-executive-action-team#:%7E:text=This
https://www.agilegenesis.com/scrum-at-scale-executive-action-team#:%7E:text=This
https://www.agilealliance.org/characteristics-of-agile-organizations/
https://www.slideshare.net/cococorina/team-facilitation
https://github.com/18F/technologybudgeting/blob/master/handbook.md#basicprinciplesofmodernsoftwaredesign
https://github.com/18F/technologybudgeting/blob/master/handbook.md#basicprinciplesofmodernsoftwaredesign

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 297 GAO-24-105506 Agile Assessment Guide

Carney, David, Suzanne Miller, and Mary Ann Lapham. “Agile
Development in Government: Myths, Monsters, and Fables.” Pittsburg,
Pennsylvania: Carnegie Mellon University, Software Engineering Institute,
September 2016.

Clarios Technology. “What is a cumulative flow diagram?” Accessed
December 31, 2019
http://www.clariostechnology.com/productivity/blog/whatisacumulativeflow
diagram.

CollabNet and VersionOne. “9th Annual State of Agile Report.” 2015.

——-. “12th Annual State of Agile Report.” 2018.

——-. “13th Annual State of Agile Report.” 2019.

——-. “14th Annual State of Agile Report.” 2020.

——-. “16th Annual State of Agile Report.” 2022).

Craddock, Andrew, and others. “The DSDM Agile Project Framework for
Scrum.” DSDM Consortium, 2012.

Dalton, Jeff. A Guide to Scrum and CMMI: Improving Agile Performance
with CMMI. Pittsburgh, Pennsylvania: Capability Maturity Model
Integration Institute, January 18, 2017. (CMMI is a registered trademark
of Information Systems Audit and Control Association, Inc.).

Davis, Christopher, W.H. Agile Metrics in Action. Shelter Island, New
York: Manning Publications Co., 2015.

Defense Science Board. “Design and Acquisition of Software for Defense
Systems”. Office of the Secretary of Defense. Washington, D.C.:
February 14, 2018.

Department of Defense. “Digital DNA” Washington, D.C.: October 2021.

Department of Defense. “DOD Instruction 5000.87: Operation of the
Software Acquisition Pathway.” Office of the Under Secretary of Defense
for Acquisition and Sustainment. Washington, D.C.: October 2, 2020.

http://www.clariostechnology.com/productivity/blog/whatisacumulativeflowdiagram
http://www.clariostechnology.com/productivity/blog/whatisacumulativeflowdiagram

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 298 GAO-24-105506 Agile Assessment Guide

——. Agile Metrics Guide; Strategy Considerations and Sample Metrics
for Agile Development Solutions, Version 1.2. Washington, D.C.:
November 11, 2020.

——. Agile Software Acquisition Guidebook, Best practices & lessons
learned from the FY18 NDAA, Section 873/874 Agile Pilot Program,
Version 1.0. Washington, D.C.: February 27, 2020.

——. “DOD Instruction 5000.82: Requirements for the Acquisition of
Digital Capabilities.” Office of the DoD Chief Information Officer.
Washington, D.C.: June 1, 2023.

——. “Agile 101, An Agile Primer, Version 2.0” Office of the
Undersecretary of Defense for Acquisition and Sustainment. Washington,
D.C.: May 16, 2023.

Department of Homeland Security. “Department of Homeland Security
Agile Acquisition Software Delivery Core Metrics.” Washington, D.C.:
Department of Homeland Security. May 22, 2017.

Department of Justice. DOJ Agile Guidance Document. Washington,
D.C.: November 6, 2015.

Derby, Esther. “Why Not Velocity as an Agile Metric?” (October 18, 2011.)
https://www.estherderby.com/why-not-velocity-as-an-agile-metric/.

Donovan, Shaun. Management and Oversight of Federal Information
Technology, Office of Management and Budget. Washington, D.C.: June
10, 2015.

Eisenberg, Robert and Ron Terbush. “Topics on Earned Value
Management for Agile Development.” Gaithersburg, Maryland:
September 17, 2013.

Federal Acquisition Institute. “Contracting Professionals Smart Guide.”
(June 19, 2017.)
https://www.fai.gov/drupal/resources/contracting-professionals-smart-guid
e.

——. “Contracting Professionals Smart Guide: Types of Contracts.”
Accessed August 28, 2017.
https://www.fai.gov/resources/contracting-professionals-smart-guide.

https://www.estherderby.com/why-not-velocity-as-an-agile-metric/
https://www.fai.gov/drupal/resources/contracting-professionals-smart-guide
https://www.fai.gov/drupal/resources/contracting-professionals-smart-guide
https://www.fai.gov/resources/contracting-professionals-smart-guide

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 299 GAO-24-105506 Agile Assessment Guide

——. “Agile Acquisitions 101: The Means Behind the Magic.” April 22,
2015.

Federal Aviation Administration. Federal Aviation Administration Agile
Acquisition Principles and Practices. Washington, D.C.: April 2016.

Foote, Steve, Justin F. Brunelle, and Tim Rice. Building Agile Programs.
MITRE’s Software Engineering Technical Center: November 28, 2018.

Garcia, Suzanne, and Richard, Turner. CMMI® Survival Guide: Just
Enough Process Improvement. Boston, Massachusetts: Pearson
Education, Inc., 2007.

General Services Administration. “Agile Principles and Practices.”
Accessed July 25, 2016. https://pages.18f.gov/agile/index.html.

——. “18F: Digital Delivery Service.” Accessed January 22,
2019.https://18f.gsa.gov/about/.

——. De-risking Government Technology: Federal Agency Field Guide
(Washington, D.C.: September 2020) Accessed July 21, 2023.
https://derisking-guide.18f.gov/federal-field-guide/basic-principles/#agile-
software-development/.

General Services Administration, Department of Defense, and National
Aeronautics and Space Administration. Federal Acquisition Regulation.
Washington, D.C.: Fiscal Year 2023.

Glover, M. Tanner, and Debra Dennie. How to be Agile with CMMI.
CMMI–Agile Process Combo. LMI Technology: January 27, 2017.

Gorans, Paul, and Philippe Kruchten. “A Guide to Critical Success
Factors in Agile Delivery.” Washington, D.C.: IBM Center for the Business
of Government. January 16, 2014.

Government Accountability Office. Personnel Vetting: DOD Needs a
Reliable Schedule and Cost Estimate for the National Background
Investigation Services Program. GAO-23-105670. Washington, D.C :
August 17, 2023.

——. Leading Practices: Iterative Cycles Enable Rapid Delivery of
Complex, Innovative Products. GAO-23-106222. Washington, D.C.: July
27, 2023.

https://pages.18f.gov/agile/index.html
https://18f.gsa.gov/about/
https://www.gao.gov/products/GAO-23-105670
https://www.gao.gov/products/GAO-23-106222

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 300 GAO-24-105506 Agile Assessment Guide

——. Space Command and Control: Improved Tracking and Reporting
Would Clarify Progress amid Persistent Delays. GAO-23-105920.
Washington, D.C.: June 8, 2023.

——. F-35 Joint Strike Fighter: More Actions Needed to Explain Cost
Growth and Support Engine Modernization Decision. GAO-23-106047.
Washington, D.C.: May 30, 2023.

——. High-Risk Series: Efforts Made to Achieve Progress Need to Be
Maintained and Expanded to Fully Address All Areas. GAO-23-106203.
Washington, D.C.: April 20, 2023.

——. Software Acquisition: Additional Actions Needed to Help DOD
Implement Future Modernization Efforts. GAO-23-105611. Washington,
D.C.: April 5, 2023.

——. U.S. Courts: Action Needed to Improve IT Management and
Establish a Chief Information Officer. GAO-22-105068. Washington, D.C.:
July 28, 2022.

——. VA Disability Benefits: Compensation Program Could Be
Strengthened by Consistently Following Leading Reform Practices.
GAO-22-104488. Washington, D.C.: July 18, 2022.

——. Business Systems: DOD Needs to Improve Performance Reporting
and Cybersecurity and Supply Chain Planning. GAO-22-105330.
Washington, D.C.: June 14, 2022.

——. Personnel Vetting: Actions Needed to Implement Reforms, Address
Challenges, and Improve Planning. GAO-22-104093. Washington, D.C.:
December 9, 2021.

——. F-35 Joint Strike Fighter: DOD Needs to Update Modernization
Schedule and Improve Data on Software Development. GAO-21-226.
Washington, D.C.: March 18, 2021.

——. Defense Acquisitions: Joint Cyber Warfighting Architecture Would
Benefit from Defined Goals and Governance. GAO-21-68,. Washington,
D.C.: November 19, 2020.

——. Defense Intelligence: Comprehensive Plan Needed to Improve
Stakeholder Engagement in the Development of New Military Intelligence
System. GAO-21-57. Washington, D.C.: November 19, 2020.

https://www.gao.gov/products/GAO-23-105920
https://www.gao.gov/products/GAO-23-106047
https://www.gao.gov/products/GAO-23-106203
https://www.gao.gov/products/GAO-23-105611
https://www.gao.gov/products/GAO-22-105068
https://www.gao.gov/products/GAO-22-104488
https://www.gao.gov/products/GAO-22-105330
https://www.gao.gov/products/GAO-22-104093
https://www.gao.gov/products/GAO-21-226
https://www.gao.gov/products/GAO-21-68
https://www.gao.gov/products/GAO-21-57

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 301 GAO-24-105506 Agile Assessment Guide

——. Social Security Contracting: Relevant Guidance Should Be Revised
to Reflect the Role of Contracting Personnel in Software Development.
GAO-20-627. Washington, D.C.: July 31, 2020.

——. Defense Acquisitions Annual Assessment: Drive to Deliver
Capabilities Faster Increases Importance of Program Knowledge and
Consistent Data for Oversight. GAO-20-439. Washington, D.C.: June 3,
2020.

——. Agile Software Development: DHS Has Made Significant Progress
in Implementing Leading Practices, but Needs to Take Additional Actions.
GAO-20-213. Washington, D.C.: June 1, 2020.

——. Cost Estimating and Assessment Guide: Best Practices for
Developing and Managing Program Costs. GAO-20-195G. Washington,
D.C.: March 12, 2020.

——. Homeland Security Acquisitions: Outcomes Have Improved but
Actions Needed to Enhance Oversight of Schedule Goals.
GAO-20-170SP. Washington, D.C.: December 19, 2019.

——. Space Command and Control: Comprehensive Planning and
Oversight Could Help DOD Acquire Critical Capabilities and Address
Challenges. GAO-20-146. Washington, D.C.: October 30, 2019.

——. Information Technology: Agencies Need to Develop Modernization
Plans for Critical Legacy Systems. GAO-19-471. Washington, D.C.: June
11, 2019.

——. DOD Space Acquisition: Including Users Early and Often in
Software Development Could Benefit Programs. GAO-19-136.
Washington, D.C.: March 18, 2019.

——. High-Risk Series: Substantial Efforts Needed to Achieve Greater
Progress on High-Risk Areas. GAO-19-157SP. Washington, D.C.: March
6, 2019.

——. Information Technology: Departments Need to Improve Chief
Information Officers’ Review and Approval of IT Budgets. GAO-19-49.
Washington, D.C.: November 13, 2018.

https://www.gao.gov/products/GAO-20-627
https://www.gao.gov/products/GAO-20-439
https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-19-471
https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-157SP
https://www.gao.gov/products/GAO-19-49

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 302 GAO-24-105506 Agile Assessment Guide

——. Managing for Results: Government-wide Actions Needed to
Improve Agencies’ Use of Performance Information in Decision Making.
GAO-18-609SP. Washington, D.C.: September 5, 2018.

——. Defense Management: DOD Senior Leadership Has Not Fully
Implemented Statutory Requirements to Promote Departmentwide
Collaboration. GAO-18-513. Washington, D.C.: June 25, 2018.

——. Defense Management: DOD Needs to Take Additional Action to
Promote Department-Wide Collaboration. GAO-18-194. Washington,
D.C.: February 28, 2018.

——. Information Technology: Further Implementation of FITARA Related
Recommendations Is Needed to Better Manage Acquisitions and
Operations. GAO-18-234T. Washington, D.C.: November 15, 2017.

——. Information Technology Reform: Agencies Need to Improve
Certification of Incremental Development. GAO-18-148. Washington,
D.C.: November 7, 2017.

——. TSA Modernization: Use of Sound Program Management and
Oversight Practices Is Needed to Avoid Repeating Past Problems.
GAO-18-46. Washington, D.C.: October 17, 2017.

——. Managing for Results: Further Progress Made in Implementing the
GPRA Modernization Act, but Additional Actions Needed to Address
Pressing Governance Challenges. GAO-17-775. Washington, D.C.:
September 29, 2017.

——. Defense Management: DOD Has Taken Initial Steps to Formulate
an Organizational Strategy, but These Efforts Are Not Complete.
GAO-17-523R. Washington, D.C.: June 23, 2017.

——. Immigration Benefits System: U.S. Citizenship and Immigration
Services Can Improve Program Management. GAO-16-467. Washington,
D.C.: July 15, 2016.

——. Information Technology: IRS Needs to Improve Its Processes for
Prioritizing and Reporting Performance of Investments. GAO-16-545.
Washington, D.C.: June 29, 2016.

——. Schedule Assessment Guide: Best Practices for Project Schedules.
GAO-16-89G. Washington, D.C.: December 22, 2015.

https://www.gao.gov/products/GAO-18-609SP
https://www.gao.gov/products/GAO-18-513
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-18-234T
https://www.gao.gov/products/GAO-18-148
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-17-775
https://www.gao.gov/products/GAO-17-523R
https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-16-545
https://www.gao.gov/products/GAO-16-89G

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 303 GAO-24-105506 Agile Assessment Guide

——. Immigration Benefits System: Better Informed Decision Making
Needed on Transformation Program. GAO-15-415. Washington, D.C.:
May 18, 2015.

——. Defense Major Automated Systems: Cost and Schedule
Commitments Need to Be Established Earlier. GAO-15-282. Washington,
D.C.: February 26, 2015.

——. Healthcare.gov: Ineffective Planning and Oversight Practices
Underscore the Need for Improved Contract Management. GAO-14-694.
Washington, D.C.: July 31, 2014.

——. Information Technology: Agencies Need to Establish and Implement
Incremental Development Policies. GAO-14-361. Washington, D.C.: May
8, 2014.

——. Software Development: Effective Practices and Federal Challenges
in Applying Agile Methods. GAO-12-681. Washington, D.C.: July 27,
2012.

——. Information Technology: Critical Factors Underlying Successful
Major Acquisition. GAO-12-7. Washington, D.C.: October 21, 2011.

——. FEMA: Action Needed to Improve Administration of the National
Flood Insurance Program. GAO-11-297. Washington, D.C.: June 9, 2011.

——. Information Technology: Veterans Affairs Can Further Improve Its
Development Process for Its New Education Benefits System.
GAO-11-115. Washington, D.C.: December 1, 2010.

——. Information Technology: Management Improvements Are Essential
to VA’s Second Effort to Replace Its Outpatient Scheduling System.
GAO-10-579. Washington, D.C.: May 27, 2010.

——. Information Security: Concerted Effort Needed to Improve Federal
Performance Measures. GAO-09-617. Washington, D.C.: September 14,
2009.

——. Government Performance: Lessons Learned for the Next
Administration on Using Performance Information to Improve Results.
GAO-08-1026T. Washington, D.C.: June 24, 2008.

https://www.gao.gov/products/GAO-15-415
https://www.gao.gov/products/GAO-15-282
https://www.gao.gov/products/GAO-14-694
https://www.gao.gov/products/GAO-14-361
https://www.gao.gov/products/GAO-12-681
https://www.gao.gov/products/GAO-12-7
https://www.gao.gov/products/GAO-11-297
https://www.gao.gov/products/GAO-11-115
https://www.gao.gov/products/GAO-10-579
https://www.gao.gov/products/GAO-09-617
https://www.gao.gov/products/GAO-08-1026T

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 304 GAO-24-105506 Agile Assessment Guide

——. Framework for Assessing the Acquisition Function at Federal
Agencies. GAO-05-218G. Washington, D.C.: September 1, 2005.

——. Results-Oriented Cultures: Implementation Steps to Assist Mergers
and Organizational Transformations. GAO-03-669. Washington, D.C.:
July 23, 2003.

——. Best Practices: Better Acquisition Outcomes Are Possible if DOD
Can Apply Lessons From F/A-22 Program. GAO-03-645T. Washington,
D.C.: April 11, 2003.

——. The Government Perofmance and Results Act: 1997 Government-
wide Implementation Will be Uneven, GGD-97-109. Washington, D.C.:
June 2, 1997.

Hayes, Will. “Agile Metrics: Seven Categories.” Software Engineering
Institute blog. (September 22, 2014.)
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categor
ies.html.

——. Three Secrets to Successful Agile Metrics. Software Engineering
Institute, November 2017.

Hayes, Will, and others. “Agile Metrics: Progress Monitoring of Agile
Contractors.” Pittsburg, Pennsylvania: Carnegie Mellon University,
Software Engineering Institute. January 2014.

Intelliware Development Inc. “7 Myths of Agile Development.” Accessed
March 27, 2018. http://www.intelliware.com/7-myths-agile-development/.

Jordan, Andy. Focus on the Right Stuff: Agile Metrics Matter. CA
Technologies, March 20, 2018.

Jordan, Joseph G., and Steven VanRoekel. Contracting Guidance to
Support Modular Development. Office of Management and Budget.
Washington, D.C.: June 14, 2012.

Kan, Stephen, H. Metrics and Models in Software Quality Engineering.
Upper Saddle River, New Jersey: Pearson Education, Inc., 2003.

Kanban Tool. “Cumulative Flow Diagram.” Get to know one of the most
insightful Kanban metrics. Accessed December 31, 2019.
https://kanbantool.com/cumulative-flow-diagram.

https://www.gao.gov/products/GAO-05-218G
https://www.gao.gov/products/GAO-03-669
https://www.gao.gov/products/GAO-03-645T
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html
http://www.intelliware.com/7-myths-agile-development/
https://kanbantool.com/cumulative-flow-diagram

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 305 GAO-24-105506 Agile Assessment Guide

Kanbanize. “Cumulative Flow Diagram for Best Process Stability.”
Accessed May 5, 2023.
https://kanbanize.com/kanban-resources/kanban-analytics/cumulative-flo
w-diagram.

Kundra, Vivek. 25 Point Implementation Plan to Reform Federal
Information Technology Management. Office of Management and Budget.
Washington, D.C.: December 9, 2010.

Lapham, Mary Ann, and others. “Agile Methods: Selected DOD
Management and Acquisition Concerns.” Pittsburg, Pennsylvania:
Carnegie Mellon University, Software Engineering Institute. October
2011.

Lapham, Mary Ann, and others. “RFP Patterns and Techniques for
Successful Agile Contracting.” Pittsburg, Pennsylvania; Carnegie Mellon
University, Software Engineering Institute. November 2016.

Leffingwell, Dean. Agile Software Requirements Lean Requirements
Practices for Teams, Programs, and the Enterprise. Boston,
Massachusetts: Addison-Wesley, December 27, 2010.

Lewis, Patrick. “6 Best Practices for Remote Work by Agile Software
Development Teams” March 23, 2021 Accessed July 27, 2023.
https://www.gartner.com/smarterwithgartner/6-best-practices-for-remote-
work-by-agile-software-development-teams.

List, Doc. “How to Get Started With Story Points Via Affinity Estimation
(And Cheat Sheet).” June 2, 2016.
https://agilevelocity.com/blogget-started-story-points-via-affinity-estimatio
n-cheat-sheet/.

Lorell, Mark A., Julia F. Lowell, Obaid Younossi. Evolutionary Acquisition
Implementation Challenges for Defense Space Programs. Santa Monica,
California: Rand Publishing, August 1, 2006.

Magennis, Troy. Moneyball for Software Projects: Agile Metrics for the
Metrically Challenged. Agile Alliance, 2014.

Mahmoud, Omar. “Agile Project Management Contorls.” The Barakah
Consulting Group. SW and IT Cost IPT Conference. Arlington, VA:
August 2015.

https://kanbanize.com/kanban-resources/kanban-analytics/cumulative-flow-diagram
https://kanbanize.com/kanban-resources/kanban-analytics/cumulative-flow-diagram
https://www.gartner.com/smarterwithgartner/6-best-practices-for-remote-work-by-agile-software-development-teams
https://www.gartner.com/smarterwithgartner/6-best-practices-for-remote-work-by-agile-software-development-teams
https://agilevelocity.com/bloggetstartedstorypointsviaaffinityestimationcheatsheet/
https://agilevelocity.com/bloggetstartedstorypointsviaaffinityestimationcheatsheet/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 306 GAO-24-105506 Agile Assessment Guide

Marquis, Hank. “5 Steps to Transparent Metrics.” Do-IT-Yourself Guides.
itSM Solutions. April 1, 2008.
www.itsmsolutions.com/newsletters/DITYvol4iss14.htm.

McNally, Frank. “Enabling Acquisition Success for Agile Development.”
Arlington, Virginia: ASI Government. March 2014.

McQuade, Michael J., and others. “Software is Never Done: Refactoring
the Acquisition Code for Competitive Advantage.” Washington, D.C.:
Department of Defense. March 14, 2019.

Measey, Peter. “The Top 10 Myths about Agile Development.” June 2015.
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-d
evelopment.

Miller, Suzanne. “The Readiness & Fit Analysis: Is Your Organization
Ready for Agile?” Pittsburg, Pennsylvania: Carnegie Mellon University,
Software Engineering Institute. April 2014.

——. “Is Your Organization Ready for Agile?–Part 5.” SEI Insights.
Carnegie Mellon University. June 23, 2014.
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-f
or-agile.html.

——. “Is Your Organizaion Ready for Agile?–Part 6.” SEI Insights.
Carnegie Mellon University. January 11, 2015. from
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-f
or-agile-3.html.

——. “Is Your Organization Ready for Agile?–Part 7.” SEI Insights.
Carnegie Mellon University. April 25, 2016.
https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-f
or-agile-4.html.

Miller, Suzanne, William Hayes, and Eileen Wrubel. “Agile in
Government. Written testimony of Software Engineering Institute’s Agile
in Government Team to House Ways and Means SSA Subcommittee.”
Pittsburg, Pennsylvania: Carnegie Mellon University, Software
Engineering Institute. July 14, 2016.

MITRE. “Agile Cost Estimation. Acquisition in the Digital Age.” Accessed
June 10, 2019. https://aida.mitre.org/agile/agile-cost-estimation/.

http://www.itsmsolutions.com/newsletters/DITYvol4iss14.htm
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-development
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-development
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-for-agile.html
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-for-agile.html
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-for-agile-3.html
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-for-agile-3.html
https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-for-agile-4.html
https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-for-agile-4.html
https://aida.mitre.org/agile/agile-cost-estimation/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 307 GAO-24-105506 Agile Assessment Guide

Modigliani, Pete, and Su Chang. “Defense Agile Acquisition
Guide:Tailoring DOD IT Acquisition Program Structures and Processes to
Rapidly Deliver Capabilities.” McLean, Virginia: The MITRE Corporation.
March 2014.

NASCIO (National Association of State Chief Information Officers) and
Accenture Consulting. “Agile IT Delivery: Imperatives for Government
Success.” (October 2, 2017.)
https://www.nascio.org/resource-center/resources/agile-it-delivery-imperat
ives-for-government-success/.

National Defense Industrial Association (NDIA). “An Industry Practice
Guide for Integrating Agile and Earned Value Management on Programs,
Version 1.4” Arlington, Virginia: NDIA. December 9, 2022.

——-. “An Industry Practice Guide for Agile on Earned Value
Management Programs, Version 1.3.” Arlington, Virginia: NDIA. May 26,
2019.

——. “An Industry Practice Guide for Agile on Earned Value Management
Programs.” Arlington, Virginia: NDIA. March 31, 2017.

Nicolette, David. Software Development Metrics. Shelter Island, New
York: Manning Publications, Co., 2015.

Niven, Paul, R. and Ben Lamorte. Objectives and Key Results: Driving
Focus, Alignment and Engagement with OKRs. Hoboken, New Jersey:
Wiley, John & Sons, Inc., 2016.

Norton, Michael. Agile Metrics: Velocity is Not the Goal. Agile Alliance,
2013.

Office of the Chief Information Officer; Office of the Chief Technology
Officer. “Department of Homeland Security Delivery Metrics Playbook.”
Washington, D.C.: Department of Homeland Security. July 19, 2017.

Office of Management and Budget. “Capital Programming Guide.”
Supplement to Office of Management and Budget Circular A-11:
Planning, Budgeting, and Acquisition of Capital Assets. Washington, D.C.
2017.

https://www.nascio.org/resource-center/resources/agile-it-delivery-imperatives-for-government-success/
https://www.nascio.org/resource-center/resources/agile-it-delivery-imperatives-for-government-success/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 308 GAO-24-105506 Agile Assessment Guide

——-. “Capital Programming Guide.” Supplement to Office of
Management and Budget Circular A-130: Managing Information as a
Strategic Resource. Washington, D.C. 2016.

——-. “Request for Comments on Digital Services Playbook and
TechFAR Handbook.” August 21, 2014.
https://www.federalregister.gov/documents/2014/08/21/2014-19805/reque
st-for-comments-on-digital-services-playbook-and-techfar-handbook.

——-. “TechFAR Handbook for Procurring Digital Services Using Agile
Processes.” Washington, D.C.: U.S. Digital Services. August 7, 2014.

——-. “Contracting Guidance to Support Modular Development.”
Washington, D.C. June 14, 2012.

——-. “IT Dashboard: IT Spending FY2011-2021.” Accessed June 19,
2020. https://www.itdashboard.gov/.

Oltman, J. “Agile vs. Traditional: An Unncessary War.” PM World Journal,
vol. II, Issue III. March 2013.

Palmquist, Steven M., and others. “Parallel Worlds: Agile and Waterfall
Differences and Similarities.” Pittsburg, Pennsylvania: Carnegie Mellon
University, Software Engineering Institute. October 2013.

Pinot, Avinish, and others. “Federal Aviation Administration Agile
Acquisition Principles and Practices.” McLean, Virginia: The MITRE
Corporation. April 2016.

Performance Assessments and Root Cause Analyses (PARCA). “Agile
and Earned Value Management: A Program Manager’s Desk Guide.”
Washington, D.C.: Department of Defense. March 3, 2016.

Potomac Forum, Ltd. Implementing and Managing Agile Development in
Government. AGILE Development in Government Training Workshop IV.
Washington, D.C.: Potomac Forum, January 28, 2015.

Project Management Institute, Agile Alliance. Agile Practice Guide.
Newtown Square, Pennsylvania: Project Management Institute,
September 2017.

https://www.federalregister.gov/documents/2014/08/21/2014-19805/request-for-comments-on-digital-services-playbook-and-techfar-handbook
https://www.federalregister.gov/documents/2014/08/21/2014-19805/request-for-comments-on-digital-services-playbook-and-techfar-handbook
https://www.itdashboard.gov/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 309 GAO-24-105506 Agile Assessment Guide

——. A Guide to the Project Management Body of Knowledge (PMBOK®
Guide), Fifth Edition, 2013. PMBOK is a trademark of the Project
Management Institute, Inc.

Reinersten, Donald. The Principles of Product Development Flow:
Second Generation Lean Product Development. Renoldo Beach,
California: Celeritas Publishing, 2009.

——-. Managing the Design Factory: A Product Developer’s Toolkit. New
York, New York: The Free Press, 1997.

Rodrigues, Alexandre. “Can We Measure Agile Performance with an
Evolving Scope? Agile Product Management & Software Engineering
Excellence, vol. 18, no. 1. Arlington, Massachusetts: Cutter Consortium.
May 22, 2017.

Rubin, Kenneth, R. Essential Scrum: A Practical Guide to the Most
Popular Agile Process. Upper Saddle River, New Jersey: October 2015.

Runyon, Tamara Sulaiman. “Agile EVM Information for Good Decision
Making.” CollabNet, Inc. 2010.

Sahota, Michael, and others. “Beyond Budgeting: a Proven Governance
System Compatible with Agile Culture.” Agile Alliance: (2015.)
https://www.agilealliance.org/beyond-budgeting-a-proven-governance-sys
tem-compatible-with-agile-culture/.

Scaled Agile. “Overview of the Scaled Agile Framework® for Lean
Enterprises.” SAFe® 4.6 Introduction. Boulder, Colorado: Scaled Agile.
November 2018.

——-. “Overview of the Scaled Agile Framework® for Lean Enterprises.”
SAFe® 5.0. Boulder, Colorado: Scaled Agile. December 2019.

—-. “Introducing SAFe 6.0 to Optimize the Flow of Portfolio Value.”
SAFe® Scaled Agile. Boulder, Colorado: Scaled Agile. March 2023.

Schwaber, Ken, and Jeff Sutherland. “The Definitive Guide to Scrum: The
Rules of the Game.” The Scrum Guide. Mountain View, California:
(November 2017) (https://scrumguides.org). The guide is licensed under
the CC BY-SA 4.0 license.

https://www.agilealliance.org/beyond-budgeting-a-proven-governance-system-compatible-with-agile-culture/
https://www.agilealliance.org/beyond-budgeting-a-proven-governance-system-compatible-with-agile-culture/
https://scrumguides.org/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 310 GAO-24-105506 Agile Assessment Guide

Scott, Tony, and Anne E. Rung. Federal Source Code Policy: Achieving
Efficiency, Transparency, and Innovtion through Reusable and Open
Source Software. Office of Management and Budget. Washington, D.C.:
August 8, 2016.

Section 809 Panel. Report of the Advisory Panel on Streamlining and
Codifying Acquisition Regulations, vol. 1. Arlington, Virginia: January
2018.

——-. Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, vol. 2. Arlington, Virginia: June 2018.

——-. Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, vol. 3. Arlington, Virginia: January 2019.

Sidky, Admed. Dr. Agile Training Videos. Accessed March 1, 2017.
https://www.ahmedsidky.com/agile-course.

Sims, Chris. “Should Management Use Velocity as a Metric?” Agile
Learning Labs. August 27, 2013.)
http://www.agilelearninglabs.com/2013/08/should-management-use-veloc
ity-as-a-metric/.

Software Engineering Institute. CMMI® for Development, Version 1.3.
Pittsburgh, Pennsylvania: November 2010. (CMMI is a registered
trademark of Information Systems Audit and Control Association, Inc.).

Solomon, Paul J. “Agile Earned Value and the Technical Baseline”
Managing for Success. The Data & Analysis Center for Software.
September 2009.

——-. “Basing Earned Value on Technical Performance.” CrossTalk.
January 2013.

——-. Software Engineering Institute. “Using CMMI to Improve Earned
Value Management.” Software Engineering Process Management.
Pittsburg, Pennsylvania: Carnegie Mellon University, Software
Engineering Institute. October 2002. (CMMI is a registered trademark of
Information Systems Audit and Control Association, Inc.).

——-. Tutorial: Integrated Systems Engineering with Earned Value
Management and Program Management, Contractually and Practically.

https://www.ahmedsidky.com/agile-course
http://www.agilelearninglabs.com/2013/08/should-management-use-velocity-as-a-metric/
http://www.agilelearninglabs.com/2013/08/should-management-use-velocity-as-a-metric/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 311 GAO-24-105506 Agile Assessment Guide

NDIA Systems Engineering Conference. Tampa, Florida: October 22,
2018.

Sulaiman, Tamara, Brent Barton, and Thomas Blackburn. “Agile EVM-
Earned Value Management in Scrum Projects.” Agile 2006 Conference.
Minneapolis, Minnesota: July 2006.

Sutherland, Jeff and Scrum Inc. The Scrum@Scale® Guide; The
Definitive Guide to Scrum@Scale: Scaling that Works. Version 2.1.
Cambridge, Massachusetts, Scrum Inc. February 2022.
(https://www.scrumatscale.com/scrum-at-scale-guide/). The guide is
licensed under the CC BY-SA 4.0 license.

The PMI Agile Community of Practice Wiki. “Glossary.” Accessed March
5, 2020. http://agile-pm.pbworks.com/.

The U.S. Digital Service. “Digital Services Playbook.” Accessed July 25,
2016. https://playbook.cio.gov/.

——. “TechFAR Hub.” Accessed August 30, 2023.
https://techfarhub.usds.gov/get-started/.

The White House. “Fact Sheet: Improving and Simplifying Digital
Services.” Office of the Press Secretary. August 11, 2014. Accessed
March 23, 2020.
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-s
heet-improving-and-simplifying-digital-services.

——. “Memorandum for the Heads of Executive Departments and
Agencies. Policies for Federal Agency Public Websites and Digital
Services. M-17-06)” November 8, 2016.
https://www.cio.gov/assets/resources/Memorandum-For-The-Heads-Of-E
xecutive-Departments-and-Agencies.pdf.

——. “Executive Order on Transforming Federal Customer Experience
and Service Delivery to Rebuild Trust in Government.” December 13,
2021.
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/12/1
3/executive-order-on-transforming-federal-customer-experience-and-servi
ce-delivery-to-rebuild-trust-in-government/.

Van Doorem, Wouter, Geert Bouckaert, and John Halligan. Performance
Management in the Public Sector. New York, New York: Routledge, 2010.

https://www.scrumatscale.com/scrum-at-scale-guide/
http://agile-pm.pbworks.com/w/browse/#view=ViewAllObjects
https://playbook.cio.gov/
https://techfarhub.usds.gov/get-started/
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-sheet-improving-and-simplifying-digital-services
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-sheet-improving-and-simplifying-digital-services
https://www.cio.gov/assets/resources/Memorandum-For-The-Heads-Of-Executive-Departments-and-Agencies.pdf
https://www.cio.gov/assets/resources/Memorandum-For-The-Heads-Of-Executive-Departments-and-Agencies.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/12/13/executive-order-on-transforming-federal-customer-experience-and-service-delivery-to-rebuild-trust-in-government/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/12/13/executive-order-on-transforming-federal-customer-experience-and-service-delivery-to-rebuild-trust-in-government/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/12/13/executive-order-on-transforming-federal-customer-experience-and-service-delivery-to-rebuild-trust-in-government/

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 312 GAO-24-105506 Agile Assessment Guide

Verheyen, Gunther. “Measuring Success, Measuring Value.” Scrum.org:
January 8, 2014.
https://scrum.org/resources/blog/measuring-success-measuring-value.

Wrubel, Eileen, and Jon Gross. “Contracting for Agile Software
Development in the Department of Defense: An Introduction.” Pittsburg,
Pennsylvania: Software Engineering Institute, Carnegie Mellon University.
August 2015.

https://scrum.org/resources/blog/measuring-success-measuring-value

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 313 GAO-24-105506 Agile Assessment Guide

This section lists credit and copyright information for images and graphics
in this product, as appropriate, when that information was not listed
adjacent to the image or graphic.

Front cover:
Source: stock.adobe.com (images)
GAO (graphical additions to images)

Chapter cover sheets:
Source: Vectormine/stock.adobe.com (images).

Image credits

The Government Accountability Office, the audit, evaluation, and investigative
arm of Congress, exists to support Congress in meeting its constitutional
responsibilities and to help improve the performance and accountability of the
federal government for the American people. GAO examines the use of public
funds; evaluates federal programs and policies; and provides analyses,
recommendations, and other assistance to help Congress make informed
oversight, policy, and funding decisions. GAO’s commitment to good government
is reflected in its core values of accountability, integrity, and reliability.

The fastest and easiest way to obtain copies of GAO documents at no cost is
through our website. Each weekday afternoon, GAO posts on its website newly
released reports, testimony, and correspondence. You can also subscribe to
GAO’s email updates to receive notification of newly posted products.

The price of each GAO publication reflects GAO’s actual cost of production and
distribution and depends on the number of pages in the publication and whether
the publication is printed in color or black and white. Pricing and ordering
information is posted on GAO’s website, https://www.gao.gov/ordering.htm.

Place orders by calling (202) 512-6000, toll free (866) 801-7077, or
TDD (202) 512-2537.

Orders may be paid for using American Express, Discover Card, MasterCard,
Visa, check, or money order. Call for additional information.

Connect with GAO on Facebook, Flickr, Twitter, and YouTube.
Subscribe to our RSS Feeds or Email Updates. Listen to our Podcasts.
Visit GAO on the web at https://www.gao.gov.

Contact FraudNet:

Website: https://www.gao.gov/about/what-gao-does/fraudnet

Automated answering system: (800) 424-5454 or (202) 512-7700

A. Nicole Clowers, Managing Director, ClowersA@gao.gov, (202) 512-4400, U.S.
Government Accountability Office, 441 G Street NW, Room 7125, Washington,
DC 20548

Chuck Young, Managing Director, youngc1@gao.gov, (202) 512-4800
U.S. Government Accountability Office, 441 G Street NW, Room 7149
Washington, DC 20548

Stephen J. Sanford, Managing Director, spel@gao.gov, (202) 512-4707
U.S. Government Accountability Office, 441 G Street NW, Room 7814,
Washington, DC 20548

GAO’s Mission

Obtaining Copies of
GAO Reports and
Testimony
Order by Phone

Connect with GAO

To Report Fraud,
Waste, and Abuse in
Federal Programs

Congressional
Relations

Public Affairs

Strategic Planning and
External Liaison

Please Print on Recycled Paper.

https://www.gao.gov/
https://www.gao.gov/subscribe/index.php
https://www.gao.gov/ordering.htm
https://facebook.com/usgao
https://flickr.com/usgao
https://twitter.com/usgao
https://youtube.com/usgao
https://www.gao.gov/about/contact-us/stay-connected
https://www.gao.gov/about/contact-us/stay-connected
https://www.gao.gov/podcast/watchdog.html
https://www.gao.gov/
https://www.gao.gov/about/what-gao-does/fraudnet
mailto:ClowersA@gao.gov
mailto:youngc1@gao.gov
mailto:spel@gao.gov

	GAO Agile Assessment Guide
	Best Practices for Adoption and Implementation
	Contents
	Preface
	Introduction
	Developing the Guide
	The Guide’s Readers
	The Guide’s Contents
	Acknowledgments

	Chapter 1: Background
	Chapter 2: Agile Adoption Challenges in the Federal Government and Actions Taken in Response
	Challenges
	Challenges in executing Agile methods
	Challenges in evaluating Agile methods

	Actions Taken to Address Challenges

	Chapter 3: Agile Adoption Best Practices
	Team Dynamics and Activities
	Team composition supports Agile methods
	Agile teams are self-organizing
	The role of the product owner is defined to support Agile methods
	Agile teams use user stories to define work
	Agile teams estimate the relative complexity of user stories
	Requirements are prioritized in a backlog based on value
	Agile programs employ continuous integration
	Mechanisms are in place to ensure the quality of code being developed
	Agile teams perform regular demonstrations
	Agile teams perform regular retrospectives

	Program Operations
	Staff continue developing expertise in Agile
	Program staff are trained in Agile methods
	Developers and all other supporting team members have the appropriate technical expertise needed to perform their roles
	System design supports iterative delivery
	Technical and program tools support Agile
	Critical features are defined and incorporated in development
	Non-functional requirements are defined and incorporated in development
	Agile teams maintain a sustainable development pace

	Organization Environment
	Organization has established appropriate life cycle activities
	Goals and objectives are clearly aligned
	Sponsorship for Agile development cascades throughout the organization
	Sponsors understand Agile development
	Organization culture supports Agile development
	Incentives and rewards are aligned to Agile development methods
	Guidance is appropriate for Agile acquisition strategies

	Best Practices Checklist: Adoption of Agile Methods

	Chapter 4: Overview of Agile Execution and Controls
	Overview of Requirements Development and Management
	Overview of Acquisition Strategy Development
	Overview of Program Monitoring and Control

	Chapter 5: Requirements Development and Management in Agile
	Elicit and prioritize requirements
	Refine requirements
	Ensure requirements are sufficiently complete, feasible, and verifiable for the current state of the program
	Balance customer and user needs and constraints
	Test and validate the system as it is being developed
	Manage and refine requirements
	Maintain traceability in requirements decomposition
	Ensure work is contributing to the completion of requirements
	Best Practices Checklist: Requirements Development

	Chapter 6: Agile and the Federal Contracting Process
	Encourage the use of modular contracting
	Enable flexibility in the contract’s requirements
	Contract structure and type
	Contract data requirements rely on Agile metrics
	Data from Agile artifacts enables contract oversight
	Conduct retrospectives to continually improve based on lessons learned
	Contract oversight reviews align with the program’s Agile cadence
	Integrate the program office and the developers
	Train program office, acquisition, and contracting personnel
	Identify clear roles
	Awareness of the contract’s scope

	Best Practices Checklist: Contracting for an Agile Program

	Chapter 7: Agile and Program Monitoring and Control
	Work breakdown structure in an Agile environment
	Cost estimating best practices in an Agile environment
	Agile measures and documenting the cost estimate
	Considerations for developing a cost estimate for an Agile program
	Consistent sizing
	Integrate software developers and cost estimators
	Cost estimating benefits

	Scheduling best practices in an Agile environment
	Agile measures and scheduling best practices
	Considerations for scheduling an Agile program
	Planning for all activities
	Minimizing the use of schedule constraints
	Assigning resources
	Conducting a schedule risk analysis
	Developing and using a schedule baseline

	Earned value management best practices in an Agile environment
	Agile measures and Earned Value Management
	Considerations for applying earned value management to an Agile program
	Tracking work breakdown structure detail
	Measuring earned value
	Calculating variances
	Controlling baseline changes

	Best Practices Checklist: Agile and Program Monitoring and Control

	Chapter 8: Agile Metrics
	Best Practices Checklist: Agile Metrics

	Appendix I: Objective, Scope, and Methodology
	Appendix II: Key Terms
	Appendix III: Related Terms
	Appendix IV: Auditor’s Key Questions and Effects
	Appendix V: Common Agile Frameworks
	DevOps
	Overview
	Structure
	Principles

	Disciplined Agile
	Overview
	Structure
	Principles

	Dynamic Systems Development Method
	Overview
	Structure
	Principles

	eXtreme Programming
	Overview
	Structure
	Principles

	Kanban
	Overview
	Structure
	Principles

	Lean Software Development
	Overview
	Structure
	Principles

	Scaled Agile Framework
	Overview
	Structure
	Principles

	Scrum
	Overview
	Structure
	Principles

	Scrum@Scale
	Overview
	Structure
	Principles

	Scrumban
	Overview
	Structure
	Principles

	Appendix VI: Debunking Agile Myths
	Appendix VII: Background for Case Studies and Agile in Action
	Appendix VIII: Specialists Who Helped Develop this Guide
	Appendix IX: GAO Contacts and Staff Acknowledgments
	GAO’s Mission
	Obtaining Copies of GAO Reports and Testimony
	Connect with GAO
	To Report Fraud, Waste, and Abuse in Federal Programs
	Congressional Relations
	Public Affairs
	Strategic Planning and External Liaison

