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Preface

The Government cost analysis community recognizes the need to capture the inherent uncertainty of
acquisition programs into realistic cost estimates to support milestone decision processes. Programmatic,
cost, schedule, and technical uncertainties are present from the earliest concept exploration phase, through
system development, acquisition, deployment, to operations and sustainment. Many estimating processes
have focused on producing a single, discrete dollar value that in turn becomes the budget. Realistically,
estimating processes develop a range of likely values, with objective and quantifiable analysis of uncertainty
intrinsically embedded. The goal of this handbook is to introduce industry best practices for incorporating
uncertainty into our cost estimates in order to provide decision makers with the information necessary to
make sound, defendable investment decisions.

Cost estimates are required throughout the life-cycle of Government acquisition programs, starting from the
early stages when requirements may be ill-defined and when potential solutions to provide the capabilities
have yet to be developed. Ideally, analysts rely on objective data analysis to develop their estimates. Often,
however, it is necessary to resort to subjective means. In both cases, there is uncertainty in the data, the
process and the ultimate estimates. This handbook provides guidance on how to capture and quantify this
uncertainty in a manner that supports the decision maker’s needs.

This handbook emphasizes the need to shift away from estimates based solely on the “best guess” of system
and programmatic parameters and encourages the cost analyst to build models that address technical,
programmatic, cost, and schedule uncertainties and risks as inter-dependent — not separate — processes. This
handbook defines best practices for capturing, analyzing and reporting cost, schedule, and technical
uncertainty that is “tool-independent”. The handbook uses a single model to support examples that show the
reader how to implement the guidance in a realistic setting. Illustrations are drawn from three industry-
common cost risk and uncertainty analysis tools: @Risk, Crystal Ball, and ACEIT RI$K. Regardless of the
tool used, adherence to the guidelines yield equivalent, defensible results.

The effective incorporation of risk uncertainty in cost and schedule estimates is a challenging task. This
handbook is promulgated to help establish a systematic, structured, repeatable and defendable process for
delivering comprehensive estimates to Government leadership to get the best possible capability with
increasingly limited available resources.
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1.0 INTRODUCTION

1.1 PURPOSE

The purpose of the Cost Schedule Risk and Uncertainty Handbook (CSRUH) is to describe acceptable
analytical techniques to model uncertainty in a cost estimate in order to calculate and report the cost risk.
The handbook also provides guidance on how to capture the impact of schedule uncertainty and the
consequences of discrete events that may influence the cost risk assessment. The goal of the handbook is to
define and clearly present simple, well-defined cost risk and uncertainty analysis processes that are
repeatable, defendable and easily understood. While capturing schedule uncertainty is a theme throughout
this document, the handbook content is applicable to the development of any uncertainty model. It also
provides an introduction to building a fully integrated cost and schedule risk and uncertainty analysis. To aid
in the distinction of these very different types of models, we will use the following definitions:

e CISM: The Cost Informed by Schedule Method is a cost uncertainty model that has some level of
duration uncertainty built into it such that duration uncertainty influences the cost simulation results.
Building a CISM model, illustrated in Figure 1-1, is the focus of this handbook. However, the
guidance is also applicable to the development of cost uncertainty models that are not informed by
schedule.

e FICSM: The Fully Integrated Cost/Schedule Method is typically a cost loaded schedule model with
cost/schedule risks and uncertainty addressed. The elements of a FICSM model are introduced in
Appendix B. The FICSM approach is currently gaining community interest and may be the way of
the future. It is introduced in this handbook and will be more fully addressed at a later date.

Throughout this handbook, many technical terms are used that are derived from a comprehensive and often
conflicting cost/schedule uncertainty sources listed in Section 7.0. For a consolidated list of definitions, see
Appendix A . It is expected that the reader has a good knowledge of cost estimating and statistics.
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Figure 1-1 CISM Model Development Flow

Risk and uncertainty data should be collected and input into the model at the same time as the point estimate.
Recommend incorporating schedule uncertainty via CISM or FICSM approach.
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1.2 RISK AND UNCERTAINTY

1.2.1 The Requirement for Cost Risk and Uncertainty Analysis

Cost analysts do their utmost to develop the best cost estimate possible from the available information. This
should include building the cost model to be consistent with the project’s planned schedule. The fact
remains that every assumption and variable driving the cost estimate represents only one point within a range
of possible values. For this reason, a cost estimate of this type is called a “point estimate.”

Ensuring the cost model point estimate is sensitive to schedule uncertainty is not easy. Typically, analysts
collect completed project data as a basis for developing cost estimating relationships (CERs). Depending on
the nature of the data, the CERs may already capture some degree of schedule uncertainty. A cost analyst
must be able to defend the uncertainty built into the model and demonstrate there is no “double counting” of
uncertainty.

The key steps in the cost estimating process are illustrated in Figure 1-2'. This handbook focuses on the
mechanics of building the model to support step nine.

Risk and uncertainty analysis begins early-on

Process for Generating a Program Life-Cycle Cost Estimate

Build the
Collect, Cost
Normalize § Informed

Conduct

Define Define Set Tradeoffs

Establish Plan the Present

Program J Estimating § Ground and Results

Need 8
Scope

Estimate & Analyze

Baseline Structure Rules
Data

Sensitivity For

Review

and
Decision

Establish  Define Define Program Baseline Define Ground  Data  Assign Risk &  Perform Assess Cost  Create
Estimate  Scope and Cost Element Rulesand  Collection Uncertainty Trodeoffs and Schedule Reports
Plan Structure {CES) Assumptions and  While building Risk
Analysis Point EStimate

Figure 1-2 Department of Navy Cost Estimating Process

1.2.2 The Difference Between Risk and Uncertainty

There is an important distinction between the terms risk and uncertainty:
¢ Risk is the probability of a loss or injury
e Uncertainty is the indefiniteness about the outcome of a situation

This definition is supported by References 23, 49 and 62. In a situation that includes favorable and
unfavorable events, risk is the probability that an unfavorable event occurs. Uncertainty is defined in cost
models for the purpose of estimating risk. In the context of a cost model, risk is the probability that a
specific funding level will be exceeded. The definition of risk and uncertainty is illustrated in Figure 1-3.

! This figure is based upon one found in the Department of the Navy Independent Cost Assessment Manual, Naval Center for Cost
Analysis (Reference 87).
2
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Spectrum of Outcomes

Favorable Outcomes Unfavorable Outcomes

Budget

Uncertainty
< Risk

Figure 1-3 The Difference Between Risk and Uncertainty

The goal of the simulation model is to combine the all sources of cost uncertainty in order to estimate the
risk of exceeding a given budget.

1.3 SOURCES OF UNCERTAINTY

1.3.1 Uncertainty to be Captured

Every program has many sources of uncertainty. The goal is to model the combined effect of all sources of
uncertainty in order to assess the risk of exceeding a given budget. At a minimum, the model needs to
capture the uncertainty of:

e All parametric CERs including factors and learning curve equations

e All CER inputs, complexity factors for analogies, engineering judgment

e Any other cost drivers (man-hours, head counts, rates, ratios, overhead, fee, etc.)
e The planned schedule (durations)

e Risk register events, both probability of occurrence and the consequence

This handbook will provide guidance on how to apply correlated uncertainty across these elements of a cost
risk and uncertainty model.

1.3.2 Uncertainty Captured From the Risk Register

The CISM modeling process defined in this handbook begins by addressing the uncertainty (see Section
1.4.1) in the cost model which will include modeling the impact of the risk register. The goal is to model the
combined effect of these sources of uncertainty in order to assess the risk of exceeding a given budget. But
modeling the uncertainty in the cost estimate is not sufficient. The analyst needs to capture the risk register
as well.

The Risk Management Guide for DoD Acquisition (Reference 48) contains baseline information and
explanations for a well-structured risk management program. Risk management is a fundamental program
management tool for effectively managing cost, schedule, and technical risks associated with system
acquisition. The Risk Management Guide for DoD Acquisition provides guidance on how to identify and
assess negative events. In this handbook, however, the risk register will capture not only the potential
negative outcomes (risks) but positive outcomes (opportunities) as well.

Since the risk register contains both risks and opportunities, it would seem appropriate to assign it a name
other than: risk register. However, risk register is a very common term used to define potential events that

3
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could have either a negative (risk) or positive (opportunity) impact on the project. As an example, the
Association for the Advancement of Cost Engineering (AACE) International recommended practice 57R-09,
Integrated Cost and Schedule Risk Analysis (SRA), (Reference 72) defines risk events as events that may or
may not happen, but if they do happen they will have a negative or positive impact on the cost or schedule or
both. The Risk Register is a listing of all risk events that impact the cost model.

The primary source of the risk register will be from the program risk management team. However, the risk
management team will not have a cost focus. They will be assessing a wide variety of risks to the program’s
objectives and characterizing their impact on cost, schedule or both. The role of the cost analyst will be to
use this information to select those risks not already inherently captured in the cost uncertainty model and
add them as discrete events with a probability of occurrence and the event’s impact on cost and/or schedule.
Capturing the risk register is discussed in Section 2.7.

The uncertainty model must capture uncertainty of cost methods, cost method inputs and the risk register.
Where possible, the influence of duration uncertainty should also be captured.
Any additional uncertainty that can be modeled in a defensible way should also be captured.

1.3.3 Uncertainty That Could be Captured

There are many other potential sources of cost estimate uncertainty. If defendable methods are available, the
analyst should consider capturing the uncertainty of the following (specific guidance not contained in this
handbook):

e Inflation

e Acquisition strategies

e Requirements creep

e Significant change in the planned scope

e Different contracting options/strategies

e Congressional/Service actions (e.g. budget perturbations)

e Anything outside the project manager’s control that will affect the project that can be modeled

No standard, approved modeling methods are provided in this handbook for these uncertainties. Inclusion of
these uncertainties should be done with great care to reduce the likelihood of double counting or creating
overly pessimistic assessments.

1.3.4 Uncertainty That Should Not Be Captured

Special consideration should be given to uncontrollable events that can impact the cost of a program. In
most cases, these events should not be included in the uncertainty assessment. If at all, they could be the
subject of a separate sensitivity analysis and discussion. Events such as natural disasters (hurricanes,
earthquakes, etc.), industry collapses (bankruptcies, litigation, etc.), mission changing events (e.g. space
shuttle disaster), and world events (e.g. September 11™) should generally be excluded from explicit
uncertainty modeling.

1.3.5 Elements That Could Be Regarded as Certain

There are actually several elements in the model that should not be regarded as uncertain. The most obvious
portions of the estimate that should be considered certain are sunk costs (see Section 2.8.2). Also, elements
with inconsequentially low cost need not receive uncertainty treatment unless there are many of these
elements. Items that may be considered certain include:

4
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Sunk costs

A design fact (i.e. for each item A4 procured, three of item B will be procured)
Unit of Measure conversion factors

Production minimum or maximum sustainable rates

Production quantity is often a source of uncertainty but generally not assigned an uncertainty
distribution. Instead, various quantity scenarios are best treated as discrete what-if cases, each of
which is subjected to the risk and uncertainty analysis.

1.4 OVERVIEW OF COST RISK AND UNCERTAINTY METHODS

1.4.1 Simulation-Based Cost Risk and Uncertainty Analysis

With several powerful commercial and government simulation tools from which to choose, simulation has
become the most popular method of modeling cost uncertainty. For details on simulation methods see
Section A.10. The specific type of tools to be used is a function of the type of model to be created:

CISM models: The simulation tools most commonly used in the DoD cost analysis community
suitable for CISM models are Crystal Ball (CB), @Risk, and the Automated Cost Estimator (ACE).
CB and @Risk are Excel-based general-purpose commercial risk and uncertainty modeling tools.
ACE is a DoD-funded tool designed for the government cost analysis environment. This handbook
does not recommend any specific tool, but does acknowledge that these three are in common use and
widely accepted. Examples in this handbook will be modeled using all three of these tools and it will
be shown that probability results are within a percent or less of each other. It is the responsibility of
the analyst to determine which tool to use in accordance with their organization’s policy and tool
availability.

FICSM Models: There are even more tools to choose from and in use throughout the government to
support FICSM model building and they tend to either be add-ins to specific scheduling tools, or
stand-alone tools that will import the schedule model files. They include Primavera Risk Analysis
(PRA), @Risk for Project, Risky Project, ACEIT (the Joint Analysis Costs and Schedule — JACS
component), Acumen Fuse and Polaris to name a few. Unlike the spreadsheet-based tools, these
schedule-based simulation tools are relatively new to the industry, many of them emerging in the last
few years. Also unlike the spreadsheet-based tools, the differences between them make it
challenging to have them agree completely with each other. The state-of-the-art for FICSM models
is changing very fast and so are the tools. For that reason, the FICSM model example in Appendix B
was only developed in one tool to demonstrate one possible way to generate a FICSM result.

1.4.2 Other Methods

There are other acceptable methods for performing an uncertainty analysis. These include:

Enhanced Scenario Based Method (eSBM): eSBM is not a simulation-based approach. It is based
on developing one or more potential scenarios and using historical information to help define the
impact. eSBM also provides an output uncertainty distribution around scenario results based on
historical cost growth data. eSBM is discussed further in Section 5.2.

Method of Moments: Method of moments is an analytical approach to estimating total program
uncertainty. It can be useful when there is a need to sum large numbers of uncertain elements.
Method of moments principles are applied in Section 3.3.3 to compare an analytical solution to a
simulation result when summing correlated uncertainties. It is also discussed in Section 5.3.
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2.0 COST INFORMED BY SCHEDULE METHOD MODEL

2.1 STRATEGIC APPROACH

A systematic process for developing a CISM model, regardless of the tool used, is summarized in Figure
2-1. In this section of the handbook we will provide guidance on each step of the process. The important
messages of Figure 2-1 are:

The point estimate is the anchor of the risk and uncertainty modeling process. It must be complete
before the risk and uncertainty modeling can be completed.

Cost methods and their drivers must be assessed for uncertainty. Use of schedule duration sensitive
cost estimating methods and uncertainty around schedule duration is strongly encouraged.

Risk register items must address risk and opportunity and they may influence methods or drivers.

Define uncertainty parameters as a percent of the point estimate to avoid problems when performing
what-if drills as uncertainty will scale with the point estimate.

Measure the correlation present in the model to determine if additional correlation is required.
Measure, do not guess, the number of simulation trials required to obtain a stable, converged result.

Compare results with those shown in Section 3.5.3 to help with understanding the results.

Perform In Parallel

4\ Point Estimate /

L J
Callect All Uncertain Elements In One Location
Estimating Methods Drivers
= Paramefric Equation = CER Imputs
= Factor = Labor Rates
= Analagy = Effort Hours
= Bulid-up = Durations
= Throughput = Amything else thatls
= 37 Party Toals not “certain”

Risk Register

= Risk Conseguence and Opportunity Savings
= Probability of Occurrence

i ]

Assign Uncertainty
Link distributions to the point estimate
by defining their parameters as factor of the
point estimate where ever feasible

= ‘y
Run the Simulation

¥

Measure correlation created by the model
Apply additional correlation as required

¥

Measure For Convergence

¥

Unsatisfactory E Compare Results To ; Satisfactory ; Generate
Results Guidelines Results Reports

Figure 2-1 Overview of the Simulation Method

The process is iterative as indicated by the feedback loop passing though the “unsatisfactory results” block.
Pausing to review for consistency in how the risk and uncertainty assumptions have been applied and to
compare the statistical results with metrics suggested in Section 3.5 will improve the quality of the overall
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result. In the CISM modeling approach, uncertainty is applied to every element influencing the cost
estimate, including task durations. Analysts are encouraged to find ways to at least introduce schedule
uncertainty into the cost model. A few examples will be demonstrated via the example model as inspiration
for introducing schedule into the readers’ models.

2.2 THE POINT ESTIMATE

2.2.1 Point Estimate Definition

The starting point for any uncertainty analysis method is a point estimate. The point estimate cost and
schedule must be based upon a realistic, documented definition of the program. Depending on the objective
of the estimate, the point estimate can be based upon

¢ Program of Record: defined in the requirements documents
e Technical Baseline: alternative that reflects a technical assessment
o  What-If Case: for a specific sensitivity analysis

When incorporating schedule uncertainty into the cost model, analysts should be cognizant of the fact that
cost estimates are structured very differently than schedule estimates:

e The cost point estimate (PE) will be derived from an approved work breakdown structure (WBS)
structure. MIL-STD-881C presents direction for effectively preparing, understanding, and presenting
a Work Breakdown Structure. It provides the framework for Department of Defense (DoD) Program
Managers to define their program’s WBS and also for defense contractors in their application and
extension of the contract’s WBS. Cost estimating methods are applied at the lowest level of
indenture and are driven by uncertain technical, schedule and programmatic inputs. This is consistent
with the idea that the point estimate inputs should reflect the best assessment consistent with the cost
estimate objective. Appendix A.2 contains further details on the nature of a cost point estimate.

e The schedule point estimate (PEg) is an integrated network of activities containing all the detailed
discrete work packages and planning packages (or lower-level tasks of activities) necessary to
support the events, accomplishments, and criteria of the project plan. Please see Appendix A.1.9 for
a discussion of an Integrated Master Plan (IMP) and Integrated Master Schedule (IMS). In this
handbook and the example model (both CISM and FICSM), we assume that neither the IMP nor the
IMS are available. Consequently, the schedule to be developed from program documents and should
follow the concepts of an IMS, but at a much reduced level of detail. Ideally, it will follow the same
WBS structure as the point estimate (Reference 62).

2.2.2 Point Estimate Total Does Not Capture Risk or Uncertainty

The cost point estimate should not include any extra dollars inserted into individual cost elements to address
some measure of estimate uncertainty. Nor should elements like Engineering Change Proposals (ECP) be
used to capture uncertainty of other cost elements. WBS elements like ECP should be estimated in the same
way as other WBS elements. ECP should be estimated from historical data or expert opinion, but without
additive “pads” or “margins” to address suspected shortfalls in estimates of other WBS elements. Planned
ECPs can be captured explicitly. Unplanned ECPs should be captured through uncertainty modeling.

The degree to which the selected cost estimating method may underestimate or overestimate cost should be
addressed in the uncertainty analysis, not by understating or overstating the cost estimating method. Cost
drivers such as weight, code count, volume, power, rates, etc. should reflect the documented value and not
some lower or upper bound. The potential for a cost driver to be something other than the documented value
should be handled in the uncertainty analysis process.
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No matter how much effort is applied to estimating lower-level WBS elements, the parent (or total) levels in
the point estimate can only be the most-likely value if every child estimate is a most-likely with perfectly
symmetrical uncertainty. In practice, this is never the case for cost estimates. The objective of the risk and
uncertainty analysis is to estimate the combined uncertainty of every element based upon cost, schedule and
risk register influences to provide a basis for estimating the probability (risk) of exceeding a specific budget.

2.2.3 Point Estimate Construction

When performing cost risk and uncertainty analysis, the analyst should ensure that the point estimate is as
complete as possible. No amount of agonizing over distribution shapes, bounds or correlation will make up
for the exclusion of elements required in the estimate or by using estimating relationships that are completely
inappropriate for the system in question. Yes, collect the necessary data and build uncertainty as the model
is developed, but ensure that the point estimate is as complete and robust as is possible.

This handbook uses a simplified missile WBS (based on Mil-Std 881C) as shown in Figure 2-2. This
example will be used throughout the handbook to illustrate the application of cost risk and uncertainty
analysis methods, processes, and to produce effective reports.
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Figure 2-2 Example WBS and Input Variables

As shown in Figure 2-2, only a few duration variables are in use and it will be shown this has a significant
impact on the cost uncertainty result. Additionally, two risk register events are included with a total of one
duration and two cost impacts. Note how the risk register is integrated into the model. This approach makes
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it easier to build the model, but there remains the requirement to expeditiously identify and cross check risk
register items with the source.

2.2.4 Modeling Approaches

Once the analyst has identified the scope and schedule and has defined the program WBS (see WBS example
in Figure 2-2), there is the task of populating the lowest level of the WBS with cost estimating methods.

While the modeling approach to each element arises from the four standard estimating methods (i.e.,
analogy, parametric, engineering, and extrapolation), the choice of how the methods are implemented will
determine how uncertainty is to be assigned. This handbook will provide specific guidance on the following:

e Cost as a function of technical parameters: Uncertainty is assigned to the equation itself and to its
inputs.

e Cost as a factor of another cost: The factor is one form of a parametric equation, however it tends
to be used to estimate cost as a factor of another cost. The factor is uncertain and additional
uncertainty is inherited through the cost variable.

e Level of Effort: Quantity times the cost per unit, burn rate times a duration, and other engineering
calculations. In these instances the equation or build-up method itself is not uncertain. However each
variable in the method needs to be assessed for uncertainty.

e Throughputs: Analogies, quotes, and subject matter expert opinion are almost always uncertain.
While the source value may be a known, its applicability to the new program may be uncertain.

e Third Party tool results: When moving results from another model or tool into another, it is not
enough to import the point estimate; the uncertainty needs to be imported as well.

2.2.5 Duration Sensitive Cost Estimating Methods

Applying uncertainty directly to dates is discouraged. The date 01 October 2013 is interpreted by Excel as
41458. Plus or minus a small percentage results is in a very long duration relative to most projects. It is
more intuitive and easier to control when uncertainty is applied to durations in terms of months or days.
There will be many ways to cause the cost model to be sensitive to duration. The example model includes
several such methods that should not be construed as required or even recommended practices. They are
included here only to illustrate and inspire. Each of the following are built into the example @Risk, Crystal
Ball and ACE example models:

e EMD Start: A planned start date of 010ct2013 is defined. A start delay of two months is defined
and used to calculate a modeled start date using Excel and ACE date functions®. This structure
makes it easy to cause the modeled start date to be uncertain. This may have no effect on a constant
year estimate, but it will impact the TY estimate.

e EMD Duration: A most-likely EMD duration is defined in months and used to calculate the EMD
end date. The EMD end date is also influenced by a risk register event.

e Link EMD End to Production Start: Production start is modeled as EMD end. There are several
alternative variations that could be considered.

0 Independent: Production start could be modeled similar to EMD start, and independent of EMD
end. In our model, the Production schedule is fixed and unlinked to EMD by default.

? Note that Excel YearFrac(FromDate, ToDate, [Basis]) either omitting or using a value of 0 for the optional basis variable forces
Excel to assume 30 day months and 360 day years. Many financial calculations are made under these assumptions. Use “1” for the
optional basis value to force YearFrac to use actual dates, and to match the ACE DateY earDiff function.

9
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0 Lead/Lag: The PEs could include an uncertain lead/lag providing for production start to either
have a gap or overlap EMD end. It is not uncommon, for instance, for production to begin before
EMD has concluded.

Production Duration: For the example model, the baseline assumption is that 600 missiles will be
obligated at a rate of 150 per year. The first and last year quantities are influenced by the production
start date. The model adjusts the duration of production for the assumed production rate.

In order to cause the model cost to be sensitive to duration, the following modeling choices were made:

Directly influenced by duration: System engineering, program management, and test and
evaluation costs are often directly related to duration since it is necessary to retain staff when
durations expand and staff can be reassigned when projects end early. Estimating methods tend to
estimate total cost. It is important to also estimate the nominal duration associated with the total cost.
This provides a basis for estimating a monthly or annual burn rate ($/month or $/year) and thus create
an estimating method that is directly influenced by duration (burn rate * duration).

Learning influenced by duration: Production duration is influenced by total quantity and
production rate. In this situation, a unit learning curve is not influenced by duration, but a rate
affected learning curve will be affected. The example model employs a rate affected learning curve.
If the rate per year is changed, duration and total cost will change.

Indirectly influenced by duration: Many elements such as training, data, peculiar support
equipment and initial spares are often estimated as factors of the prime mission product (in our case,
Missile Production). Thus, as the production cost is influenced by duration, this impact is inherited
by elements that are estimated based on a factor times the production cost.

Table 2-1 identifies the cost estimating methods in the example cost model and how they are influenced by
duration. This handbook will provide focused guidance on how to apply uncertainty to the above methods.

Table 2-1 Cost Modeling Approaches in the Example Model

WBS Description Estimate Method Duration Sensitive

Missile System

Engineering and Manufacturing Development

Air Vehicle

Design & Dewvelopment [DurationBased] EMD_DesignDevPerMth*EMD_Duration Direct

Prototypes [Factor for T1] EMD_Prod * ProdTOEMDStepUpFact * Learning] Time Independent
Software [Analogy] ThirdParty ToolSWManMonths * SWLaborRate$| Time Independent
System Engineering [Build-up] EMD_SEFTE * EMD_SELabRate$ * EMD_Duration Direct
Program Management [Build-up] EMD_PMFTE * EMD_PMLabRate$ * EMD_Duration Direct
System Test and Evaluation [Factor] EMD_Trng_Fac * EMD_Proto$| Time Independent
Training [Factor] EMD_Trng_Fac * EMD_AV$| Indirect
Data [Factor] EMD_Data_Fac * EMD_AV$ Indirect
Peculiar Support Equipment [Factor] EMD_SptEquip_Fac * EMD_Proto$| Time Independent

Production & Deployment

Air Vehicle
Airframe* [Parametric CER: TRIAD] 25.62 + 2.101 * AirFrameWt ” 0.5541 Learning Rate
Propulsion* [Parametric CER: OLS Loglinear] 1.618 * MotorWt " 0.6848 Learning Rate
Guidance* [Throughput] 100 Learning Rate
Payload* [Parametric CER: OLS Linear] (30.15 + 1.049 * WarheadWt) * AdjustFactor Learning Rate
Air Vehicle IAT&C* [Third Party Tool] IACO_HsPerUnit * MfgLaborRate$| Learning Rate
System Engineering [Build-up] Prod_SEFTE * Prod_SELabRate$ * Prod_Duration Direct
Program Management [Build-up] Prod_PMFTE * Prod_PMLabRate$ * Prod_Duration Direct
System Test and Evaluation [Throughput] $1,250 per year| Direct
Training [Factor] Trng_Fac * AV_Prod$| Indirect
Data [Factor] Data_Fac * AV_Prod$ Indirect
Peculiar Support Equipment [Throughput] $7,634.27] Time Independent
Initial Spares and Repair Parts [Factor] InitSpares_Fac * AV_Prod$| Indirect

* = CER to estimate the first unit cost for a rate affected unit learning curve

10
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2.2.6 Role of Sensitivity Analysis on the Point Estimate

A sensitivity analysis is a systematic approach used to identify the impact of potential changes to one or
more of an estimate’s major input parameters on the total cost. The objective is to vary input parameters
over a range of probable values and recalculate the estimate to determine how sensitive the outcomes are to
changes in the selected parameters.

A sensitivity analysis chart is shown in Figure 2-3. The example illustrates the cumulative effects of
changes to EMD and Production cost drivers (see Section 5.2.4 for details). An arbitrary sensitivity analysis,
while useful to find cost drivers, is not sufficient to quantify the program cost risk (eSBM is a form of a
sensitivity analysis, but is not arbitrary, see Section 5.2). Each result shown in Figure 2-3 is merely a point
estimate does not convey the risk and uncertainty associated with each of them.

§425,000
u Optimistic

$400.000 1 m Program Estimate

sarsooo | MPessimistc  f | .

$350.000

$325,000

% 5300000 S
o

P
= $275,000 I

$250.000 —— .

$225.000 —-----—- —— .

$200,000 —-----——-- —— .

5175000 ——-----—- S

$150,000

Missile System

Figure 2-3 Example of a Sensitivity Analysis Chart

2.3 UNCERTAINTY DISTRIBUTIONS

2.3.1 Overview

The point estimate represents one possible estimate based upon a given set of program characteristics and
serves as the reference point on which the cost uncertainty analysis is anchored.

For any given item, this may be determined via one of three approaches:
e Objective (statistical analysis of relevant historical data)
e Subjective (expert opinion)

e Third Party Tools (separate models)

2.3.2 Probability Distributions, Histograms and S-Curves

A probability distribution is used to define uncertainty in the model as it assigns probabilities to the possible
outcomes of a random event. A first step in assessing the behavior of collected data is to create a histogram.

A histogram is a bar chart where the y-axis is a count of the number of data points occurring within the width
of each bar. The bars of a histogram are drawn so that they touch each other to indicate that the variable is
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continuous. Figure 2-4 illustrates the concept with two sample sets. Each sample set contains nine
observations. In Sample 1, there are nine unique and equally spaced points giving rise to one point per
interval. In Sample 2, more than one point is binned into several of the intervals and a shape takes form.

Histogram Sample 1 Histogram Sample 2
3 3

Obs Sample 1 c Obs Sample 2 =

1 6.0 E 1 3.8 o

2 7.0 &2 2 1.9 &2

3 3.0 = 3 1.3 =

= =

4 8.0 3. 4 2.3 31

5 1.0 5 4.9

6 4.0 6 2.8

7 5.0 0 A 7 3.1 0 -

g 2.0 0 1 2 3 4 5 6 7 3 9 10 8 1.0 c 1 2 3 4 5 6 7 8 9 10
) 5.0 Bin Upper Bound ) 2.6 Bin Upper Bound

Figure 2-4 Histogram Examples

The frequency count for each bin can be transformed into percentages by dividing by the total number of
sample points. In this case, the y-axis becomes the probability of a value falling within each bin, with the
aggregate probability of all bins equaling 1. This type of histogram is often called the probability density
function (PDF) plot. Graphing the cumulative probability is called the cumulative distribution function
(CDF) plot, but is more commonly known as the “s-curve”. A convention to help distinguish between the
two is that the PDF y-axis is labeled with values between 0 and 1 while the CDF is labeled with percentage
values. Figure 2-5 illustrates Sample 2 in PDF and CDF form.

PDF and CDF For Sample 2
060 - - 100%
Obs PDF | CDF 050 - -
1 0.00 | 0.0 0.40 |
2 011 | 11% - 0%
[T ")
3 0.22 | 33% || £ 030 | aox g
a 033 | 67% 0.20 1
5 022 | 89%
1 - 20%
6 011 | 100% 010
7 0.00 0.00 t t T T T T T T 0%
8 0.00 o 1 2 3 4 5 B 7 8
9 0.00 Bin Upper Bound

Figure 2-5 PDF and CDF Example

While random numbers can be graphed into a histogram to determine if there is any pattern (distribution), a
known distribution can be used to generate random numbers. This is the core of the uncertainty simulation
process. Understanding uncertainty simulation begins by understanding histograms.

A critical part of the construction of any histogram is determining how many intervals (bins) the data should
be grouped into. There is no standard approach, but there are several well-known options. Table A-14 lists
five popular options. The Mann-Wald method (discussed in detail in Reference 8) is used by Crystal Ball
and CO$TAT to determine the number of bins for the Chi*2 goodness of fit test (see Section 2.4.3.5 and
Appendix A.9.5). Mann-Wald/2 (Equation 2-1) is recommended for use as a first approximation of bin
count for histograms and as the basis for the Chi"2 goodness-of-fit test for samples less than thirty data
points.

Equation 2-1 Mann-Wald /2 Bin Count Equations

0.2

2 2

2(%} Excel: ROUND(2*(2*0bsCount*2/(NORMSINV(ChiSigLv1))*2)"0.2,0)
o

12
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Where,

n is the sample size
@ ! is the inverse standard normal distribution
a is the level of confidence for the Chi”2 test

Mann-Wald/2 is recommended for use as a first approximation of bin count.

2.3.3 Choosing and Defining Cost Model Probability Distributions

There are a large number of possible distribution shapes defined in the literature and available through a
variety of tools. In an effort to promote consistency across program estimates, analysts are encouraged to
limit their selection of distributions to those defined in Table 2-2. See Appendix A.6 for mathematical
details on these distributions.

Table 2-2 Recommended Uncertainty Distributions

NUMBER OF
DISTRIBUTION|  TYPICAL APPLICATION KN°"|‘\’A"C')5§§E OF | PARAMETERS | RECOMMENDED PARAMETERS
REQUIRED
Lognormal Default when na better info. 2 Median, high
Probability skewed right. s h 4 . “Location®
Replicate ancther model result. | Mean or median known (song;?;:u“ai:?:mmpal:a::i;r;s i d:,";te'm .
Power OLS CER uncertainty. better than the mode lognormal left or right (even into negative region)
Log-t Log-twhen < 30 data points 3 Add Degrees of Freedom

Expert opinion. Finite min/max.
Probability reduces fowards
Triangular endpoints. Skew possible. Good idea 3 Low, mode, and high
Labor rates, labor rate
adjusiments, factor methods

Like friangular, but mode is 4 times

BetaPert more important then min or max. Very good idea 3 Low, mode, and high

Like friangular, but min/max
Beta region known bétter than mode. Not sure 4 Min, low, high, and max

Normal Equal chance lowfhigh. Good idea, but 2 Mean/Median/Mode
Unbounded in either direction | unbounded in either and high value
Linear OLS CER uncertainty. direction

[ Student's-t twhen < 30 data points 3 Add Degrees of Freedom |

Equal chance over uncertainty Low and High

Uniform range. Finite minimax. No laea 2 (some tools requ re min and max)

Note: Low/high are defined with an assoclated percentile
Min/Max are the absolute lower/upper bound (also known as the 0/100)

The order of the distributions in Table 2-2 is not arbitrary. Figure 2-6 illustrates the frequency of each
distribution found across 1400 fits of various cost data, factors and CER residuals in Reference 73. The
finding that lognormal dominates is consistent with the AFCAA CRUH recommendation that lognormal
should be the default distribution. Note that uniform was never found to be and normal was rarely found to
be the best fit. Also, because beta and triangular were so close to each other, triangular was placed ahead of
beta due to its simplicity and popularity.

13
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M lognormal M Beta @ Triangular M Normal

Figure 2-6 Relative Frequencies of Distribution Shapes

Lognormal distributions have a defined lower bound that is never less than zero. They have an upper bound
of infinity, thus providing at least some probability of a large cost overrun. The skew of a lognormal’ is pre-
defined. This handbook recommends that in the absence of better information, choose lognormal as the
shape of the uncertainty distribution. If it is known that the distribution is left skewed, betaPERT is
recommended when there is no evidence to do otherwise.

2.3.4 Operating and Support Probability Distributions

Some agencies include failure analysis mathematics in their operating and support cost models to estimate
the number of spares and/or maintenance actions. A few of these distributions are introduced here. For
details on their specification and uses please see Reference 40 and 57. These distributions include:

e Poisson distribution can be used to define the number of failures in a specified time when the
average number of failures is small. It is also a useful distribution to estimate testing, inventory
levels, and computing reliability. The Poisson distribution is a discrete distribution that requires only
a single parameter which is the mean of the distribution. A common use of the Poisson is to simulate
the number of failures per year by using the inverse of the mean time between failures as the
parameter.

e Exponential distribution is a continuous distribution that can be used to estimate the time between
failures. The parameter in this case is the mean time between failures.

e  Weibull distribution is a continuous distribution to estimate the time between failures when failure
rate is decreasing (closer to the beginning of service) and when failure rate is increasing (closer to the
end of service).

2.3.5 Uncertainty Distribution Descriptive Statistics

The descriptive statistics for any distribution are described in Appendix A.4. Also, see Appendix A.5 for
the definition of probability (or percentile). Every distribution will have a mean and median. But not all
distributions will have a mode, finite minimum, or finite maximum. Figure 2-7 illustrates several descriptive
statistics and two subjective points (low and high) that could be used to define the distribution. Section 2.5.3
provides further guidance on the source and meaning of a low and high point in the distribution. The
probability (percentile) of these particular low and high values is shown. For instance, there is an eight
percent probability that a random draw from Figure 2-7 will return a number between 55.8 and 80. It is

3 All three tools (CB, @Risk, and ACE) use different conventions to describe a lognormal. However, with care, the identical
lognormal distribution can be successfully replicated in all three.
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important to distinguish between min/max, the absolute bounds of a distribution, and the low and high which
will always have a percentile associated with them to uniquely define their location in the distribution.

In the absence of better information, choose lognormal as the distribution shape.

In the absence of better information and the distribution is known to be left skewed, use betaPERT.

Mode Median
(100) (124.3

Mean
(129.5)

' | |
80 100 120 140 160

High

(8 percentile) (78 percentile)

Figure 2-7 Distribution Parameters of a Notional Triangle

2.3.6 Uncertainty Distribution Skew

It is rare for an element in a cost model to have a symmetric distribution, meaning an equal chance of an
underrun or an overrun. Skew is a measure of the asymmetry of the probability distribution. Appendix
A.4.5 provides the mathematical definition of skewness and also another more simplified definition. The
area under the curve of any probability distribution is one (1.0). A simplified view of skew is a measure of
the area to the left of the mode. For example, if the area to the left of the mode is 0.25 then the distribution is
right skewed (most of the area is to the right of the mode). If the area to the left is 0.75 then the distribution
is left skew.

Figure 2-8 presents several illustrations of left skewed, not skewed and right skewed distributions. In each
illustration the mode is labeled as the point estimate with the exception of the uniform distribution. Having
no mode, the point estimate shown on each uniform illustration is simply a reference point with more
probability to the left or right of the point estimate.
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Figure 2-8 Illustration of Distribution Skew

All uncertainties should be data-driven rather than subjective, whenever possible.
All distributions should be selected based on fitted data rather than subjective, whenever possible.

2.4 OBJECTIVE UNCERTAINTY

2.4.1 Overview

Objective uncertainty is an assessment of the uncertainty based on well-defined statistical processes. In the
context of cost analysis, this begins with the collection and normalization of relevant historical data. This
handbook will address two statistical methods for estimating uncertainty:

e Developing parametric equations through regression analysis

e Fitting distributions to historical data or CER residuals
2.4.2 Uncertainty of Parametric CERs

2.4.2.1 Types of Parametric CERs

Parametric CERs are derived from regression analysis. Regression analysis is a statistical technique to
discover what, if any, independent characteristics of the item in question help explain the variation of that
item’s cost across a variety of projects. How well parametric equations derived in this manner predict the
source data provides a statistical, objective assessment of the uncertainty of the CER result. The CER error
is modeled either as an additive or multiplicative factor as illustrated in Figure 2-9 (from Reference 13)
where y is the cost of interest, f{x) is the CER functional form and ¢ is the error term. The error is measured
by comparing the actual cost to the cost predicted by the CER for each data point used to create the CER.
Regression analysis seeks to minimize the CER error term. In cost analysis, the multiplicative error term is
considered most representative. See Appendix A.8.4.

16




Joint Cost Schedule Risk and Uncertainty Handbook

Additive Error Multiplicative Error
Y Y i
yi=flx)+eg Yi=Jf(x) g s
s MBS Fhae
oy R ;
e
saf S
o ":‘:.-'.55"'
- -:li-' .!‘_'.:.
g
X

Figure 2-9 Additive and Multiplicative Functional Forms
The most common regression methods are described in detail in Appendix A.7 and summarized here:

¢ Ordinary Least Squares (OLS), Unit Space: OLS solves for linear relationships and minimizes an
additive error term. An example of an OLS derived CER is: Cost = 30.15+1.049*WarheadWt.

e Ordinary Least Squares, Log Space: OLS solves for linear relationships and minimizes an additive

error term in log space (regression performed on the log of the data). The error term is multiplicative
in unit space. An example of a Log Linear OLS derived CER is: Cost=1.618*MotorWt"0.6848.

e Minimum Unbiased Percentage Error (MUPE): Derives CERs with multiplicative error terms
directly in unit space. An example of a CER that cannot be derived using OLS but can be derived
with MUPE is: Cost=25.62 + 2.101 * AirFrameWt * 0.5541 (known as a triad form).

e Zero Bias Minimum Percent Error (ZMPE): ZMPE is another method that can derive CERs with
multiplicative error terms directly in unit space. Like MUPE, it can be used to derive any CER
functional form, including those that OLS cannot derive.

2.4.2.2 Choosing the Parametric CER Distribution Shape and Point Estimate Location

Regardless of the CER method employed, even if the CER inputs (independent variables) are known
precisely, the CER will return a result that is not certain. Depending on how the CER is developed, the error
may be assumed to be either additive or multiplicative (a factor of the CER result). In cost estimating, we
expect the potential error of the CER to scale with the CER result thus making multiplicative error terms the
preferred approach for modeling the CER uncertainty (see Appendix A.8.4).

Two critical decisions when applying uncertainty to CERs are: selecting the uncertainty shape and defining
where the point estimate falls within the distribution. Both of these decisions should be based upon an
understanding of the regression method used to develop the CER. It is also possible to fit a distribution to
the residuals (see Section 2.4.3.8). Point estimate location considerations for the most common regression
methods are:

e OLS Linear: A premise of the OLS method is that the errors will be normally distributed in fit space.
The OLS linear CER result is the center of the normal distribution. The center is the mean, median
and mode which are equal.

e OLS Log Space: Applying OLS in log space yields a multiplicative lognormal uncertainty in unit
space. The point estimate result is the median, not the mean of the lognormal uncertainty.

e MUPE: For both linear and nonlinear functional forms, MUPE assumes normal distribution with the
point estimate falling in the center.

e ZMPE: delivers the mean estimate because the sample bias is zero (just like the MUPE CER).
Distribution shape is arbitrary, but it is common to assume it is lognormal.
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Two critical decisions: Select the uncertainty shape and define where the point estimate falls

2.4.2.3 Calculating the Prediction Interval

The most appropriate method to estimate the bounds of the CER uncertainty is to calculate a prediction
interval. Most statistical software packages will do this calculation for OLS CERs and some will address
MUPE. For details on how to calculate simple OLS CER prediction intervals manually, see Appendix A.8.5
and A.8.8. If the CER was generated using a statistical tool, or if the detailed statistical results are available,
this information should be used to calculate the prediction interval.

The prediction interval is the preferred source of distribution bounds

2.4.2.4 Estimating the Prediction Interval

When obtaining a prediction interval is not possible, the CER’s standard error (SE, see Appendix A.1.8) may
be used to obtain objective uncertainty. This may arise in the absence of the data and the time to create the
CER and its prediction interval, or the lack of detailed statistical results from a published CER. Also known
as the CER standard deviation, the SE alone is generally not sufficient to define CER uncertainty. An
adjustment is required to account for the location of the point estimate within the dataset used to generate the
CER. As the estimate moves away from the center of the CER dataset, the spread of the prediction interval
will increase.

Table 2-3 contains the SE multipliers based on the sample size and the independent variable value’s position
relative to the mean of those used to create the CER. Each multiplier in the table was computed using
Equation A-54 contained in Appendix A.8.3 and published in Reference 15. To use the table, determine:

o the size of the sample used to generate the CER. If there is only a qualitative assessment, use

O Small=5
0 Medium=15
0 Large=25

o the distance from CER center: this is the distance the CER input is from the mean of the
independent variable as a ratio to its standard deviation. If it is not possible to make this calculation,
the ratio can be estimated by judging how similar the project is to the source data for the CER.

Table 2-3 Factors to Adjust CER SEE Sample Size and Sample Relevance

SE Number of Data Points in Sample
Multiplier 5 10 | 15 | 20 | 25 | 30
0.00 | 1.095 [ 1.049 [ 1.033 | 1.025 | 1.020 | 1.017 [Very Similar |
0.25]1.101(1.052]1.035(1.026|1.021 | 1.018
0.50 [ 1.118 | 1.061 | 1.041 | 1.031 | 1.025 | 1.021
0.75]1.146 | 1.075 [ 1.051 | 1.038 | 1.031 | 1.026 | Similar |
1.00 | 1.183 | 1.095 | 1.065 | 1.049 | 1.039 | 1.033
1.25|1.230 | 1.121]1.082 | 1.062 | 1.050 | 1.042
1.50 [ 1.285[1.151 | 1.103 | 1.078 | 1.063 | 1.053 | Dissimilar |
1.75 | 1.346 | 1.186 | 1.127 | 1.097 | 1.078 | 1.066
2.00 | 1.414[1.225]1.155| 1.118 | 1.095 | 1.080
2.25(1.487(1.267 | 1.185| 1.142 | 1.115 | 1.096 | Different |
2.50 | 1.565 [ 1.313]1.218 | 1.167 [ 1.136 | 1.114
2.75]1.647(1.362|1.2531.195 | 1.159 [ 1.134
3.00 [ 1.732]1.414 [ 1.291 | 1.225 | 1.183 | 1.155 | Very Different|

Distance / StdDev
for Independent Variable
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Should there be no basis for determining sample size or distance from the data center, the recommended
default multiplier is 1.20 as this is the midpoint of the multipliers in the first three columns of Table 2-3.

If the only parameter to define the distribution is the standard deviation or standard error,
multiply it by 1.20 to estimate the prediction interval.

Simulation tools will allow a normal or lognormal distribution to be defined using different parameters.
Typically, the mean and standard deviation (SEE) are sufficient. Table 2-4 illustrates the steps to derive the
necessary parameters for a lognormal distribution depending on how the SEE is reported (unit or log space).
The results will be slightly different depending on data available (unit space or log space SEE). The factor
used in the example calculation is drawn from Table 2-3 assuming 10 data points and “different”.

Table 2-4 Template to Derive an Estimate’s Lognormal Distribution Parameters

Range Value Equation

Name
Data Available
Parametric CER Result CERResult $60.92|UC1 =1.618 * 200 " 0.6848; where MotorWt = 200
Parametric CER Result Probability |CERProb 50.0%| CER result is the median of the log normal distribution
Adjust for Sample Size & Relevance [SEEAdjust 1.267{10 data points, data is different from project to be estimated

CER statistics given in unit space, simulation tool requires SEE in log space:

Given: SEE Unit Space SEEUnitSpace $11.11|Statistical Package result ($8.767) multiplied by SEEAdjust
Calculate:

SEE Log Space SEELogSpace 0.1781|SQRT(LN((1+SQRT(1+4*(SEEUnitSpace/CERResult)"2))/2))
Mean Log Space MeanLogSpace| 4.1095[LN(CERResult)

Mean Unit Space MeanUnitSpace| $61.89|CERResult*EXP((SEELogSPace’2)/2)

CER statistics given in log space, simulation tool requires SEE in unit space:

Given: SEE Log Space SEELogSpace 0.1790| Statistical Package result (0.1413) multiplied by SEEAdjust
Calculate:

SEE Unit Space SEEUnitSpace $11.17|((EXP(SEELogSpace’2)-1)*MeanUnitSpace’2)'0.5

Mean Log Space MeanLogSpace| 4.1095[LN(CERResult)

Mean Unit Space MeanUnitSpace| $61.90(EXP(MeanLogSpace+SEELogSpace’2/2)

2.4.2.5 Summary of How to Define Parametric Objective Uncertainty
Overall, the order of preference for determining CER uncertainty is:

e Statistical Tool: Use the statistical tool that is used to perform the regression analysis to generate a
prediction interval for the estimate.

e Calculate the prediction interval: If, in addition to the CER equation, the detail statistical results of
the regression are available, use the mathematics of Appendix A.8.5 or A.8.8 to calculate the
prediction interval.

e Estimate the prediction interval: If only the CER equation and its standard error are available, use
the guidance of Appendix A.8.1 to estimate a standard error adjusted for the particular estimate.

2.4.3 Uncertainty Based on Fitted Distributions

2.4.3.1 Overview

Fitting, rather than assuming, a distribution to data that defines the uncertainty of an element in the model is
attractive as it is an objective, rather than a subjective, analysis of the element in question. However, the
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process of performing a best fit analysis has many subjective steps that highly influence the outcome. The
following sections of the handbook outline the key steps and recommend an approach that brings some level
of consistency to the process.

There are two specific targets for distribution fitting:

e CER Residuals: While the predictive statistics obtained from common regression methods yield
objective measures of dispersion, its shape is an assumption rather than a fact. An objective method
without assumptions is to determine the best-fitting distribution to the CER’s residuals.

e CER Inputs: There is a need to model the uncertainty of the independent variables driving CERs. A
common approach is to collect representative values, use their mean as the point estimate and assume
a normal or t-distribution and the sample standard deviation to define the uncertainty. A better
approach is to fit a distribution to the data.

2.4.3.2 Defining the Cumulative Probability of the Input Data

In order to compare a fitted distribution to the source data, it is necessary to first assign a cumulative
probability to each data point. There are many differing opinions in the literature on the best way to perform
this calculation. When the number of data points is large, there is little difference between the methods. But
when the number of data points is small, as is generally the case in cost estimating, this calculation will
highly influence distribution fitting results. If the intent is to compare results across distribution fitting
packages, one must first understand how they assign probability to the source data as this produces the
reference against which the fit is performed.

Table 2-5 lists several common methods for estimating the probability of each data point in the data set. The
cumulative probability formulas use i= the rank order of the data point and »n= the number of observations.

Table 2-5 Methods to Estimate Cumulative Probability

Cumulative
Approach Probability Extreme Data Treatment

The maximum observed value is considered an accurate
Method 1 in extreme, but something more extreme than the minimum
obsened value is considered possible.

The minimum and maximum observed values in a data set

Method 2 (i-1)(n-1) are both considered accurate extremes.
. Something more extreme than both the minimum and

Method 3 (i-5)/n maximum observed values is considered possible.
. Same as method 3, howewer duplicate values take on the
Me,thOd 3 Wlth, . (i-1 + 0.5*Freq))/ n probabilty halfway between the point below and above the

Correction for Continuity ;
duplicate.

National Institute for Similar to method 3, however greater probability of values

il(n+
Science and Technology i(n+1) beyond the data extremes.

The minimum obsenrved value is considered an accurate
Method 4 (i-1)/n extreme, but something more extreme than the maximum
obsened value is considered possible.

Each method is applied to the example model Motor and Airframe weight data in Table 2-6. Selecting a
method depends on the analyst’s judgment about the certainty of the observed extremes.
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Table 2-6 Application of Cumulative Probability Methods Examples

Method | Method | Method | Method 3 Method MEtiocijiMethocfMETiog M?thOd g NIST Methiod
a 2 2 with coc | NIST p 1 2 3 with CoC 4
) Airframe . ) ] (i-1+ ) ;

observation M\/(\)/tg(ir in (-1/(-1)]| (-5 0.5;.{-&1;))1 ity | Gayn | |observation| wat iln (-1/(n-1)] (-5)n | o serreqyy n | /(D) | (-1)/n
System #1 90 0% | 0% 5% 5% 9% 0% | |System #1 230 | 10% | 0% 5% 5% 9% 0%

System #2 112 20% | 11% | 15% 15% 18% | 10% ||System#2 300 20% 11% 15% 15% 18% 10%
System #3 130 30% 22% 25% 25% 27% 20% | |System #3 330 30% 22% 25% 25% 27% 20%
System #4 170 40% 33% 35% 35% 36% 30% | [System #4 440 40% 33% 35% 35% 36% 30%
System #5 195 50% 44% 45% 45% 45% 40% | [System #5 480 50% 44% 45% 50% 45% 40%
System #6 210 60% 56% 55% 55% 55% 50% | [System #6 480 50% 44% 45% 50% 45% 40%
System #7 225 70% 67% 65% 65% 64% 60% | |System #7 620 70% 67% 65% 65% 64% 60%
System #8 290 80% 78% 75% 75% 73% 70% | [System #8 720 80% 78% 75% 75% 73% 70%
System #9 320 90% 89% 85% 85% 82% 80% | |System #9 790 90% 89% 85% 85% 82% 80%
System #10 | 340 100% | 100% | 95% 95% 91% 90% | |System #10 | 800 100% | 100% 95% 95% 91% 90%

Method 3 and the correction for continuity (CoC) method (Reference 12) split the difference between the
two extreme approaches. However, as can be seen in the shaded cells of Table 2-6 for Airframe Weight, the
CoC method returns a probability for 480 halfway between the points below and above as 480 was repeated
twice in this dataset. The other methods apply the cumulative probability associated with the first occurrence
of the value.

As can be seen in Figure 2-10, Method 1 and 4 bound the possibilities and fitting the distribution for both
could yield different results. Choosing the approach to calculate cumulative probabilities is ultimately based
on whether or not the observed minimum and maximum are considered to be sufficient extremes. If there is
no basis to make a determination, Method 3 with COC is the recommended default approach.

Motor Wgt Airframe Wgt
100% / 100%
0% /. Q 90%
Q/
80% ’ 80% y.
rd s
70% _Z 70% Q, .

60% 7 60% 7
w /ﬁ w H/, -
S 50% . 0 50% -

/& Method 1 © ﬁ ’ Method 1
o L
40% /&/I Method 2 40% /%, # Mcthod 2
30% - Melhod 3 30% z Melhod 3

- - -
r -
20%, : # Mcthod 2 with CoC opu, -
NISI U
10% - 10% 5

*

Mcthod 2 with CoC

¥ O =
¥ O =

MIsI

p s = = Muolhod 4 - = = Molhod 4
4
0% é 0% é g
0 100 200 300 400 0 100 200 300 100 500 600 700 800 900
Weight Weight

Figure 2-10 Comparing Methods for Estimating Probability

2.4.3.3 Best Fit

There are many commercial tools available that will find the distribution that best fits a given sample of
observations. Each tool uses a different approach and offers different options. These tools will generate
slightly different results given the same dataset and results may also change as newer versions are released.
Tools such as ACEIT and @Risk will perform fits on as few as six and five data points respectively. Other
tools such as Crystal Ball require fifteen or more data points. The actual number of data points required is a
function of the number of parameters that need to be estimated. A normal distribution, for instance, requires
two. A beta distribution requires four. Another degree of freedom is lost in the curve fitting process.
Therefore, at least six data points are required to perform an unconstrained fit using the beta distribution
while retaining one degree of freedom. This is necessary to develop a goodness-of-fit statistic.
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2.4.3.4 Fit Constraints

It is not unusual for the best-fitting distribution to not capture the entire sample. For instance, the lower or
upper bound of a triangular or beta distribution fit may be higher or lower than one or more sample points.
The fit, however, could be constrained to ensure the distribution captures or “surrounds” the sample data.

Even when none of the sample points are below zero, it is not unusual for a best fit distribution to have a tail
that stretches significantly into the negative region. Mathematically, this can be absolutely sound and
correct. Pragmatically, especially in the cost analysis domain, such distributions can introduce undesirable
effects in a simulation. Again, the fit can be constrained to ensure the lower or upper bound does not exceed
a specific value (either high or low).

The several thousand fits developed for the Air Force Cost Risk and Uncertainty Metrics Manual
(CRUAMM), Reference 73 and Attachment 1, were performed with the surround and a minimum lower
bound of zero constraints in place. To support research that required thousands of curve fits, the Air Force
developed a simple distribution fitting utility in Excel to fit lognormal, normal, triangular, and beta
distributions to selected data. The utility offered two objective functions to minimize: Sum of Squared Error
(SSE) and Sum of Squared Percent Error (SSPE). Details of this tool can be found in Reference 65. This
utility is used to support curve fitting for examples in this handbook. Note the fits developed for the
examples in this handbook were unconstrained because none of the aforementioned bounds were present.

Run the fit process unconstrained first and then assess the need to run a constrained fit.

2.4.3.5 Goodness-of-Fit

Finding the best-fitting distribution through a minimum error optimization does not necessarily mean the
best fit is statistically significant. There are several goodness-of-fit metrics to measure the statistical
significance of the fit. Three of the most popular ones are (see Appendix A.9 for details):

¢ Kolmogorov-Smirnov (K-S): The sample CDF is compared to the fitted CDF and the maximum
vertical distance between them is found. This generally happens in the middle, making K-S a
preferred test when interested in accuracy at the center of the distributions.

e Anderson-Darling (A-D): Measures the total area between the sample and fit CDF and with
weightings that can focus on the fit in the tails. A-D is a preferred test when accuracy in the tails is
needed.

e Chi-Squared (Chi”2): Compares the sample frequency to the fitted frequency by bin (columns in a
histogram). This is the most common test because it is the easiest to calculate, is fast, and can
calculate significance for any fitted continuous or discrete distribution. It does have a weakness.
Chi”2 is sensitive to the number of segments used to stratify the data. There are no clear guidelines
for selecting the number and location of the bins. In Section 2.3.2, Mann-Wald/2 is recommended
as the first approximation.

Both K-S and A-D are limited in the number of distributions for which the significance of the fit can be
calculated (i.e., cannot calculate the significance of a beta and triangular fit). For this manual, the Chi*2 was
chosen because it is the only available test that would produce a set of comparable p-values across all fitted
distributions. However, it is recommended that all goodness-of-fits statistics be considered.

ACE performs the Chi”2 test, Crystal Ball performs all three and @Risk 6.0 provides all three plus two other
goodness-of-fit measures:

¢ An Information Criterion (AIC): is used to measure the relative goodness-of-fit for a statistical
model. AIC is founded in information theory, offering a relative measure of the information lost
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when a given model is used to describe reality. This criterion was developed by Hirotsugu Akaike
under the name of "an information criterion" (AIC) and first published in 1974 (Reference 4).

e Bayesian Information Criterion (BIC): was developed by Gideon E. Schwarz in 1978 (Reference
6). The BIC is also used for model selection among a finite set of models and is closely related to the
AIC. Just like the AIC, the BIC statistic is also derived from the log-likelihood function. Both
statistics take into account the number of estimated parameters of the fitted distribution. However,
the BIC penalizes more strongly than AIC for the number of estimated parameters.

It is important to note, however, that AIC and BIC statistics do not provide a measure of the statistical
significance of a particular fit. That is, the actual values of the AIC and BIC statistic do not have meaning,
except in relative terms, when comparing one proposed distribution type to another. This is also the case for
the K-S and A-D test for many distributions such as triangular and beta. Chi*2 is the only test that will
provide a measure of statistical significance for any distribution, but its results are heavily influenced by the
number of bins selected to perform the test.

2.4.3.6 Empirical Fit

If no fitted distribution is satisfactory, an empirical distribution that simply represents observed data is an
acceptable alternative. This is a cumulative distribution function with incremental steps based on individual
data points instead of a theoretical probability distribution with parameters estimated from the data. The
general approach is assumption-free except for the treatment of the extreme boundaries. To create an
empirical fit, rather than fit distributions to the data, simply enter each data point and its estimated
probability into the simulation tool. Keep in mind that working with the empirical distribution does not
involve a statistical procedure so no statement about goodness-of-fit is being made.

2.4.3.7 Suggested Fit Process
As described in the previous sections, there are many considerations when performing curve fit analysis:

e Minimization: Some tools offer more than one objective function for minimization, for instance
choosing between SSE and SSPE.

¢ Goodness-of-fit test: One or some combination of the available tests could be used. But the test and
its criteria should remain constant through all comparisons. For instance, using Chi*2 with a
significance level of five percent (5%).

0 For Chi*2, simply changing the number of bins used to perform the test could yield an
acceptable result.

e Matching parameters: The best fit with acceptable goodness-of-fit may still result in a distribution
with a mean, standard deviation, or visual (graphic) comparison that is undesirable. While not
sufficient to reject the fit, such issues may be motivation to look at the second or third choice.

e Outliers: It may be necessary to consider removing outliers, a course of action that should be
discouraged unless there is a compelling reason to do so. Improving the fit, on its own, is not a
reason to remove an outlier.

e Favor basic distributions: Just because a distribution is ranked best does not mean it is the only
acceptable choice. Examination of the parameters and the visual (CDF or PDF) may demonstrate
that several distributions are all nearly as good. In such cases, it is recommended that if lognormal,
triangular, normal, beta, betapert, or uniform is nearly as good, then select one of them. They are
easier to work with and easier to explain. However, if another distribution is a clear winner that is
not one of them (a basic distribution), it should be given serious consideration.
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¢ Empirical Fit: If the data follows a distribution with more than one mode or simply does not match
any common distribution shape, consider creating an empirical fit directly in the simulation. In
Crystal Ball this is the custom distribution; In @Risk there is the RiskCumul function; And in ACE it
is called the Custom CDF.

In order to bring consistency to the process, a flow chart was developed in Reference 73. A variation is
presented in Figure 2-11 as a place to start for agencies to develop their own standard.
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Figure 2-11 Distribution Fit Process

2.4.3.8 Fitting Distribution to Regression Residuals

As stated earlier, the regression method also includes an assumption for the distribution of the CER
uncertainty. However, it is possible to fit (rather than assume) the shape and bounds for the regression
equation from its residuals. The first step is to divide the actual data point value by the predicted data point
value. For the example model, this was performed on the Airframe CER results as shown in Figure 2-12.
The upper-left panel of the figure presents the data and the upper-center panel presents the fitted equation
and scatter plot. The upper-right panel shows the residuals sorted in ascending order along with the
computed cumulative probability using Method 3 with the CoC formula from Table 2-5. The bottom panel
shows the results of the distribution fitting process and the resulting s-curve for each candidate distribution.
The fits were ranked based upon the SEE. In this case triangular, ranked number 1, passed the goodness-of-
fit test, and yielded a mean and standard deviation very close to the sample. In order to pass the CHI"2
goodness-of-fit test, the number of bins had to change from Mann-Wald/2 to Mann-Wald (6 or greater was
sufficient to pass). The triangular distribution was used to model the uncertainty of the Airframe CER.
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2.4.3.9 Fitting Distribution to a Throughput or CER Input

The process is also applicable to measuring the spread in a single variable of a dataset for which there are no

available explanatory variables.

In these cases it is common to use the median (or mean) value as a
throughput estimate for the value in the cost model. Again, the shape and bounds of the throughput method
can be determined by fitting a distribution to the values. For the example model this process was used to
estimate Production Peculiar Support Equipment (PSE) cost. The normal curve was the best fit for PSE as
shown in Figure 2-13. The figure flows similarly to the Airframe CER figure except that the CDF is
computed directly from the data values as seen in the upper-left panel.

Figure 2-12 Fitting a Distribution to Example CER Residuals

multiplier to the median point estimate of 7,580, divide the parameters by 7,580.

To model this uncertainty as a
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Figure 2-13 Fitting a Distribution to a Throughput Example

2.4.4 Inheriting Uncertainty from One Model to Another

Often when an overall program estimate is assembled, the estimated cost for some elements may be obtained
via separate and distinct cost models. These may be third-party tools whose inner workings are closed to the
analyst, such as SEER or True Planning. These may also be transparent models configured separately due to
organizational needs or modeling expediency or a portfolio of programs. For example, a program’s sensor
subsystem may be estimated via a stand-alone radar cost model. In such situations it is recommended that
the uncertainty distribution inherent in those models be carried forward into the aggregate model. Simply
multiplying a third-party tool’s point estimate result by a “management reserve factor” is discouraged. The
third-party cost result should be treated as a random variable with uncertainty just like all the other estimated
values in the model.

When a given cost element is modeled using a separate model, apply uncertainty to each of the elements in
that model consistent with the instructions of that model’s user manual and the guidance discussed in this
handbook. Popular parametric third party tools provide sufficient simulation results to allow the analyst to
replicate the uncertainty in the aggregate model.

There are at least three methods available:
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e Custom Based on Extracted Simulation Data: This is the most accurate approach. Simply extract
the simulation trial data from the third party tool and use it to create a custom distribution. Some
tools limit the number of trials they can import (ACE, for instance, is limited to 10,000).

e Custom Based on Extracted Percentile Results: As demonstrated in Reference 61, this is a very
easy way to accurately replicate a simulation result. Extract percentile results from the third party
tool and use them to define a custom distribution in the aggregate model. The more results that are
exported, the greater the accuracy. Twenty data points (every five percent) is normally sufficient.

e Lognormal Based on Two Values: All the simulation tools will generate a lognormal distribution
from two curve values. In the absence of more detailed information, a reasonable fit can be achieved
by extracting the median and the 85% value (Reference 61). An alternative is to extract the mean
and standard deviation from the product’s simulation results.

Once the third-party tool’s resultant distribution is entered into the host cost model, assign appropriate
correlations with other elements.

When using separate models, it is recommended that the uncertainty distribution inherent in those models be
carried forward into the aggregate model.

2.5 SUBJECTIVE UNCERTAINTY

2.5.1 Overview

This section applies to every element in the cost estimate where objective uncertainty distributions are not
available. Guidance for choosing the distribution shape is provided in Section 2.3.3. In addition to shape,
distributions are characterized by parameters describing their dispersion and skewness. Subjective
dispersion parameters are commonly the low and high bounds of the value in question. It is uncommon to
obtain a subjective assessment of standard deviation, specific probability or some other descriptive statistic
when collecting subjective assessments. This section, therefore, focuses on how to interpret and use lower
and upper bounds rather than the min and max.

2.5.2 Elicitation of Subjective Bounds from Subject Matter Experts (SMEs)

Ideally, distribution parameters are developed from an objective assessment of relevant historical data as
described in the prior section. Often, however, it is necessary to rely on informed opinion. The analyst
generally has to resort to expert judgment, such as that possessed by engineers, managers, and other
knowledgeable people. This process is called elicitation. It can be difficult to do and subject to numerous
biases. These biases may be categorized as Motivational and Cognitive as listed in Table 2-7.

Table 2-7 Motivational and Cognitive Bias

Motivational Bias Cognitive Bias
Social pressure (face-to-face) Representativeness (small sample)
Impression (not face-to-face) Availability (most recent)
Group Think Anchoring and Adjustment
Wishful thinking Inconsistency (opinion changes over time)
Career goals Relating to irrelevant analogies
Misunderstanding Underestimation
Project Advocacy Human Nature
Competitive Pressures
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Further, the Association for the Advancement of Cost Engineering International (AACEI), in Reference 84,
lists the following biases, many of which are listed in Table 2-7.

Confirmation Bias: Gather facts that support certain conclusions; disregard other facts.
Premature Termination: Accept the first alternative that looks like it might work.

Inertia: Keep thought patterns that we have used in the past despite new circumstances.
Selective Perception: Screen-out information that we do not think is important.

Optimism Bias: See things in an unjustifiably positive light.

Recency: Place more attention on more recent information.

Repetition Bias: Believe what we are told most often and by the most different sources.
Anchoring: Unduly influenced by initial information; shapes our view of later information.
Group Think: Peer pressure to conform to the opinions held by the group.

Escalating Commitment: Increase support of a decision over time (over-value sunk costs).

Attribution Asymmetry: Attribute success to our abilities; attribute failures to bad luck

Best practices for elicitation include:

Have historical minimum, maximum, and averages on hand for the discussion

0 Do not initially share with the expert to avoid unintended anchoring.

0 As the dialog progresses, this will provide further context to the discussion.

0 Do not use it to bludgeon the expert, but do use it to challenge or support estimates.
Use multiple experts.

Ask for an upper and lower value. Encourage brainstorming for reasons why the range could be
larger, especially in the upper direction.

Encourage a dialog to identify the value that has a one in five chance of being lower, or the value that
has one in five chance of being exceeded. Such a dialog makes the participants determine not only
the bounds but also their interpretation.

Seek the most-likely value near the end of the discussion.

Select a distribution shape based on the skew and firmness of the bounds. Lognormal is suggested as
the default choice in the absence of compelling arguments for another shape. Refer to Table 2-2 for
further guidance on selecting a distribution shape.

In the absence of better information, treat bounds as the 70-percent interval. For symmetrical
distributions use the 15/85 percent boundary interpretation (see Section 2.5.3 for details). For
skewed distributions, consider skewing the bound interpretations as shown in Section 2.5.4.

Crosscheck and, when appropriate, challenge experts’ inputs against historical experience.
Characterize adjustments with meaningful project comparisons derived from relevant historical data
(i.e., challenge a software uncertainty assessment of +/- 50% with several relevant, real life examples
where 300% or more growth was experienced). Ideally, prepare for elicitation discussions by having
on hand meaningful cross-checks based upon well known, real-life examples.

Iterate the evolving conclusions with the experts as needed.
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2.5.3 Interpretation of Bounds Obtained Through Subjective Assessment

The low and high bounds for subjective uncertainties are often obtained from experts. Reference 5,
reprinted in Reference 63 concluded that experts rarely identify 60% or more of the possible uncertainty
range and never did better than 70% (approximately one sigma). The impact of interpreting the lower/upper
bound to be the 15%/85% without adjustment (i.e. 70% of the total range) on a triangular, normal and
lognormal distribution is illustrated in Figure 2-14 and Figure 2-15. The narrower distribution illustrates
the distribution shape if the expert bounds are taken as “absolute,” which is rarely the case (for the normal
and lognormal illustration, “absolute” is interpreted as 3 standard deviations, or 99.9% of the possible range).
The broader shape is the one that could be implied by the bounds obtained from the expert, if there is no
adjustment for skew. For the lognormal, since it is not symmetrical, only the upper or lower bound can be
defined. In Figure 2-15, the lognormal is shown when the expert upper bound is assumed to be at the 85

percentile.
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Figure 2-15 Impact of Bound Interpretation on a Normal and Lognormal Distribution

2.5.4 Adjusting Subjective Distribution Bounds for Skew

Reference 13 suggests that the 30% additional uncertainty should be applied symmetrically. Doing so,
however, changes the skew of the final distribution from the one obtained from the expert. A recommended
refinement (see Reference 23) is to adjust the low and high bound interpretation to retain the total
probability captured by the expert and to also maintain the original skew. In this discussion, skew is defined
as area to the left of the mode divided by the total area of the distribution. For a mathematical discussion of

skew, see Appendix A.4.5.
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Table 2-8 shows the sequence of steps to adjust the low and high probabilities to retain skew. Triangular
and uniform are solved using the same mathematics. There is also a closed form solution for betaPERT if
the low/high bounds are symmetrical. Otherwise, Excel solver is used to solve for the betaPERT minimum
to ensure the skew calculated from min/mode/max is the same as low/mode/high. Only the minimum need
be solved as the maximum is calculated as a function of the betaPERT minimum. An Excel utility to
perform this math is available with this handbook.

Table 2-8 Template to Calculate Adjustment for Skew

Template to Adjust Low and High Percentile for Skew
EMD Motor | Warhead
PM$ Wt Wat

Enter Case Title| Fig 2-17 Comment or Formula

Low 80 90 280 20 Input expert's low bound
Mode 100 100 290 25 Input expert's mode (most likely)
High 160 130 350 35 Input expert's high bound

Estimated uncertainty captured by expert| 70% 70% 70% 70% |Defaultis 70%

Results for Triangular or Uniform Distributions
Cumulative Probability Low| 8% 8% 4% 10% |Round(Skew * (1 - Uncertincl),2)
Cumulative Probability High| 78% 78% 74% 80% |Uncertincl + Adjusted Low Bound Interpretation
Min| 558 779 2679 13.9  |(Mode-Skew * Max)/(1 - Skew)
Max| 232.7 166.3 4227 471 |High+(High-Mode)*SQRT(UncertNotincl)/(1-SQRT(UncertNotinel))
Total uncertainty NOT captured by expert| 0.30 0.30 0.30 030 |1-Uncertncl
Skew based upon inputs| 0.25 0.25 0.14 0.33 [(Mode-Lowlnp)/{Highlnp-Lowlnp)
Revised Skew| 0.25 0.25 0.14 033 |(Mode-Min)/((Max-Min)i.e., CDF of Mode

Results for BetaPert
Cumulative Probability Low| 17% 17% 16% 16% |BETADIST(Lowinp, Alpha, Beta, Beta_Min, Beta_Max)
Cumulative Probability High| 87% 87% 86% 86% |BETADIST(Highinp, Alpha, Beta, Beta Min, Beta Max)

Min| 496 74.8 2622 12.8  |Mode-1/((1-2"BETAINV(UncertNotincl/2 Alpha Beta)))*(Mode-Lowinp)
Max| 251.2 175.6 456.8 493 |Beta_Min + Lambda * (Mode - Beta_Min) / (Alpha - 1)
Total uncertainty NOT captured by expert| 0.30 0.30 0.30 0.30  |1{HighPercentBeta-LowPercentBeta) Red cell indicates solver required

Beta skew based upon inputs| 0.37 0.37 0.28 042 |BETADIST(Mode, Alpha, Beta, Lowinp, Highlnp)
Beta skew after adjustment| 0.37 0.37 028 042 |BETADIST(Mode, Alpha, Beta, Beta_Min, Beta_Max)

Figure 2-16 illustrates how the example triangle from Figure 2-14 is adjusted to maintain the skew.

\ = = = Absoclute Bounds
— Adlusted 70% Bounds

| | |
120 140 220

Figure 2-16 Triangle Distribution Adjusted to Maintain Original Skew

It is recommended that subjective bounds are adjusted for skew when using triangular, uniform or betaPERT.
Additionally, the expert that provided the bounds should be consulted to verify the results are reasonable.

Unless there is evidence to do otherwise, treat subjective bounds (expert opinion) as the 70% range and
adjust for skew when using triangular, uniform or betaPERT.
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2.5.5 Last Resort Subjective Uncertainty Guidance

When the analyst is unable to develop objective bounds from data, unable to obtain subjective bounds from
Subject Matter Experts (SME) and unable to find a relevant document to reference, the analyst’s own
subjective designations of low, medium, and high uncertainty are a last resort. Prior to the release of the
AFCAA CRUH (Reference 50), using +/- 5% of the point estimate was seen in many estimates. This is
almost always unacceptably narrow in the cost analysis environment. Experts supporting the AFCAA
CRUH reluctantly agreed to characterize low/medium/high distributions based on their observation that the
CVs of regressed CERs tend to fall in the 0.15 to 0.35 range (good to not-so-good fits) for many
commodities. For space systems, however, CVs of 0.45 and above are not uncommon. AFCAA has since
performed a study, the Cost Risk and Uncertainty Metrics Manual that has yet to be publically released
(Reference 73). In general, that study found that CVs at lower levels in the WBS tend to be much wider.
This finding is also supported by the NCCA SAR Cost Growth study (Reference 77). If these and other
references are unavailable, Table 2-9 is offered as a table of last resort. The defaults are based upon the
following assumptions (note that the 15/85 bounds in this table do not need to be adjusted for skew):

e Lognormal: the SEE in log-space is 0.15 for low, 0.25 for medium, 0.35 for high and 0.45 for
extreme high dispersion

e Weibull: the point estimate probability / factor of location (minimum) is 0.25 / 1.15 for low, 0.20 /
1.25 for medium, and 0.15 / 1.50 for high

e All other distributions: the standard deviation divided by the mean (i.e. the coefficient of variation —
CV) is 0.15 for low, 0.25 for medium, 0.35 for high. 0.45 for extreme high and center skew

e Skew defined as (Mode-Low)/(High-Low). Left skew is 0.25, symmetrical is 0.50, right skew is 0.75
Table 2-9 Table of Last Resort Bounds for Subjective Distributions

Point EsTi?rl:;tte Point EsFt)i(r)'rlgte
Distribution Estir_n.ate and Mean*| CvV* 15% | 85% Distribution Estimgte and Mean*| CV* 15% | 85%
Position | o hability Position | o hability
Lognormal Low Median | 1.0 (50%) [1.0113]0.1509]0.8560(1.1682| JUniform Low Left Mode 1.0 (75%) |0.8701(0.1724(0.6882|1.0520
Lognormal Med Median | 1.0 (50%) [1.0318]0.2541]0.7718(1.2958| |Uniform Low Mode 1.0 (50%) |1.0000(0.1500(0.8181]1.1819
Lognormal High Median | 1.0 (50%) [1.0632]0.3613]0.6957(1.4373| JUniform Low Right| Mode 1.0 (25%) |1.1299(0.1328(0.9480|1.3118
Lognormal Ehigh** | Median | 1.0 (50%) [1.1067]0.4743]0.6273|1.5943
|
Normal Low Mean 1.0 (50%) |1.0000{0.15010.8445]1.1555 Uniform Med Left Mode 1.0 (75%) |0.7835(0.3191(0.4804|1.0866
Normal Med Mean 1.0 (50%) |1.0000{0.25010.7409]1.2591| |Uniform Med Mode 1.0 (50%) |1.0000( 0.2500 (0.6969]1.3031
Normal High Mean 1.0 (50%) |1.0024|0.3458]0.6400]1.3632| |Uniform Med Right| Mode 1.0 (25%) |1.2165(0.2055(0.9134]|1.5196
Normal EHigh Mean 1.0 (50%) |1.0154|0.42580.5547|1.4703
Weibull Low Mode 1.0 (25%) |1.1581|0.17940.9564]1.3695| |Uniform High Left Mode 1.0 (75%) |0.6969(0.5023(0.2726]1.1213
Weibull Med Mode 1.0 (20%) |1.3932|0.33240.9563|1.8547| |Uniform High Mode 1.0 (50%) |1.0000(0.3500 (0.5757]1.4243
Weibull High Mode 1.0 (15%) |2.1037|0.5723|1.0000|3.2766]| |Uniform High Right] Mode 1.0 (25%) |1.30310.2686 (0.8788|1.7275

|
Triangle Low Left Mode | 1.0 (75%) |0.8775[0.1779]0.6953]1.0414| [uniform EHigh Left] Mode | 1.0 (75%) [0.6949]0.5774[0.2085]1.1813

Triangle Low Mode | 1.0 (50%) [1.0000]0.1500]0.8338(1.1662| |Uniform EHigh Mode | 1.0 (50%) [1.0000]0.4500 |0.4544|1.5456
Triangle Low Right Mode | 1.0 (25%) [1.1225]0.1391]0.9586(1.3046| |Uniform EHigh Rig Mode | 1.0 (25%) [1.3897|0.3238|0.8441|1.9353

|
Triangle Med Left Mode | 1.0 (75%) [0.7959]0.3270]0.4923|1.0690| |Beta Low Left Mode | 1.0 (61%) [0.9393|0.1600|0.7750(1.0986
Triangle Med Mode | 1.0 (50%) [1.0000]0.2500]0.7230(1.2769| |Beta Low Mode | 1.0 (50%) [1.0000|0.1502|0.8375|1.1625
Triangle Med Right Mode 1.0 (25%) [1.2041]0.2161]0.9310(1.5078| |Beta Low Right Mode 1.0 (39%) [1.0607]0.1417]0.9014|1.2249
Triangle High Leftt | Mode | 1.0 (75%) [0.7454[0.4479[0.3467[1.1028]| [Beta Med Left Mode | 1.0 (63%) [0.8833]0.2827[0.6046]1.1517
Triangle High Mode | 1.0 (50%) [1.0000]0.3501]0.6122(1.3878| |Beta Med Mode | 1.0 (50%) [1.0000|0.2502|0.7255|1.2745
Triangle High Right | Mode | 1.0 (25%) [1.2858[0.2834[0.9034[1.7109] [Beta Med Right Mode | 1.0 (37%) [1.1170{0.2240[0.8483]1.3957
Triangle EHigh Left* | Mode | 1.0 (75%) (0.7454]0.4960)0.3004(1.1501| |Beta High Left Mode | 1.0 (66%) [0.8085|0.4191|0.4117|1.1862
Triangle EHigh Mode | 1.0 (50%) [1.0045]0.4439]0.5088(1.4998| |Beta High Mode | 1.0 (50%) [1.0000|0.3501|0.6046|1.3955

Triangle EHigh Right| Mode 1.0 (25%) [1.3674]0.3426]0.8758|1.9140| |Beta High Right Mode 1.0 (33%) |1.2021(0.2912(0.8157]1.6061

** EHigh = Extreme High * To match these paramaters, tools must be set to truncate the distribution at zero.
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Note the CVs in this table are intended for lower-level WBS elements and CER inputs. These are not to be
confused with the CV benchmarks discussed in Section 3.5.3.

There is sufficient information in the table to model the distributions in any of the available tools. See
Appendix A.6.4 for the mathematics of converting the available set of lognormal distribution parameters to
those that may be more convenient to use in the selected risk and uncertainty tool.

2.6 DOCUMENT COST METHOD AND COST DRIVER UNCERTAINTY

Uncertainty must be considered at several steps in the cost estimating process and will be addressed through
a combination of objective and subjective uncertainty. Table 2-10 illustrates one way to build the estimate
and make it easy to review key pieces of information including:

e The distribution shape and position of the point estimate in the distribution

¢ Distribution parameters as a percent of the point estimate when uncertainty should scale with what-if
cases and in the case of low/high values, their percentiles should be shown

e Distribution as values when the uncertainty range should not change with what-if cases

e The source of each uncertainty

The precise layout varies by organization and personal work style, but tables such as this one are a best
practice for documentation and for use in technical reviews.

Table 2-10 Combining CER and Input Uncertainty

Point Low High

WBS Elements Estimate Cost Estimating Relationship Form PE Position Low Intrp High Intrp Comment
Airframe T1 $77.85 25.62 + 2.101 * AirFrameW?t ” 0.5541| Triangular  [Mode = PE*85% 47.6%| 0 |167.7%| 100 |Fit Residual data
Propulsion T1 $78.56 1.618 * MotorWt ~ 0.6848|Log-t Median 20.7% | 90 |Regression Result
Guidance and Control T1 $100.00 100| Triangular ~ |Mode 85.0%| 8 |[140.0%| 78 |Expert Opinion
Payload T1 $62.01 30.15 + 1.049 * WarheadWt * PayloadAdjustment|Student's-t [Mean 113.8% | 90 |Regression Result
Airframe Weight (Ibs) 330.0 330| Uniform Undefined 182.11 | O | 855.89 | 100 |Fit to Data
Motor Weight (Ibs) 290.0 290| Triangular ~ |Mode 280.00 | 4 | 350.00 | 74 |Expert Opinion
Warhead Weight (Ibs) 25.0 25| Triangular  |Mode 20.00 | 10 | 35.00 | 80 |Expert Opinion

Define distributions in a single location within the model with key parameters clearly visible in an organized
format. This will simplify performing what-ifs, supporting technical reviews and applying correlation.

2.7 CAPTURING THE RISK REGISTER IN THE COST MODEL

The risk register is a record of all events identified by the project team that may have either a positive or
negative impact on the cost estimate. This record includes information such as:

e A description of the event
e The probability the event will occur

e The impact of the event should it occur. It is important to note that the impact of the event could be a
risk (unfavorable result) or an opportunity (favorable result).

¢ Risk mitigation strategies
e The risk owner

The risk register needs to be captured by the CISM or FICSM model. This section provides guidance on how
to capture the risk register in the cost model where “risk” references the risk register and “uncertainty”
references the uncertainty captured in the model not addressed by the risk register.
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2.7.1 Risk Register Events

The Risk Reporting Matrix illustrated in Figure 2-17 is typically used to report risks identified within a
program. The level of risk for each event is mapped to a low (green), moderate (yellow), or high (red) risk
based upon its probability (likelihood) and cost (consequence). Each square is populated with the number of
events that fall into the relevant square.

Z 4
=
2 3
2
1
1 2 3 4 5
Consequence

Figure 2-17 Risk Reporting Matrix

The DoD Risk Management Guide (Reference 48) provides the probability of occurrence for each level as
shown in Table 2-11. For example, if the event is cited as Level 3 likelihood it has a fifty percent probability
of occurring. Individual program offices may tailor these probabilities, but the following process remains the
same. Additionally, the program will define the cost impact and schedule impact amounts for each
consequence level in Table 2-11.

Table 2-11 DoD Risk Management Guide Suggestions for Likelihood and Impact

Likelihood Consequence
Probability
Level| Likelihood of Level Technical Performance Schedule Cost
Occurrence

Minimal or no consequence to technical

1 Not Likely ~10% 1
performance

Minimal or no impact Minimal or no impact

Able to meet key dates.
Slip < * month(s)
Sub-system slip > * month(s)
plus available float.

Minor reduction in technical performance or
2 Low Likelihood ~30% 2 |supportability, can be tolerated with little or no
impact on program

Budget increase or unit
production cost increases.
< ** (1% of Budget)

Minor schedule slip. Able to
meet key milestones with no
schedule float.

Slip < * month(s)

Moderate reduction in technical performance
3 Likely ~50% 3 or supportability with limited impact on
program objectives

Budget increase or unit
production cost increases.
< ** (5% of Budget)

Significant degradation in technical ) )
Budget increase or unit

erformance or major shortfall in Program critical path affected
4 Highly Likely ~70% 4 su portabilit “ma 'eé ardize program ’ Slip< * mF:Jnths production cost increase
PP ¥: May jeop prog P < ** (10% of Budget)
success
Sewere degradation in technical performance; Exceeds Acquisition
Cannot meet key program .
. Cannot meet KPP or key . Program Baseline threshold
5 Near Certainty ~90% 5 milestones.

technical/supportability threshold; will

) : Slip > * months
jeopardize program success

> ** (10% of Budget)

The cost analyst needs to obtain the risk register (introduced in Section 1.3.2) generated by the project risk
management team and determine which of the risk events have not been captured by the cost model and are
significant enough to add to the cost model. However, the sources of discrete risk items to be modeled are
not limited to the risk register. Additionally, opportunities to reduce cost should also be captured. But it is
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essential that risk register items are not added if they are already addressed in the uncertainty captured in the
current model.

Each item in the program risk register needs to be carefully assessed to properly augment the cost model.
Take care to properly interpret the cost and schedule consequences as often the risk management team may
be providing impacts only to the program’s current or pending contract. The analyst may need to extrapolate
the consequences to the remainder of the life cycle.

2.7.2 Modeling Risk Register Events

When it is determined that risk register items are not already captured in the uncertainty model, there are two
recommended approaches to model them:

e Few Risk Register Items: If there are only a few discrete uncertainties, their cost impact on the
point estimate should be included in the form of supplemental “what-if” cases, regardless of their
probability of occurrence. Funding at the “expected value” (probability of occurrence times the cost
impact) is not recommended. Doing so does not capture sufficient funds to pay for the event should
it occur, yet allocates unnecessary funds to the project if the event does not occur.

e Many Risk Register Items: If there are many discrete uncertainties, then they should be listed and
uncertainty assigned using the “yes/no” criteria, which is modeled using the Discrete distribution in
@Risk, the “Yes/No” distribution in Crystal Ball or the Probability of Occurrence column in ACE.
The point estimate value for each risk register item should be zero. Their impact will be captured by
the simulation.

Uncertainty should be applied to the cost impact as well as the probability of occurrence (Reference 58). In
the example, Risk Register Item 2 (RR2) (see Figure 2-2) is for the case when there is some likelihood the
baseline single-mode seeker fails to meet requirements and, as a consequence, an alternate multimode seeker
would be necessary for the Guidance Section. This has a 30% chance of occurring. The median impact of
this event is an additional $50K on the first unit cost. Both the likelihood (30%) and the consequence
($50K) are themselves point estimates and must receive uncertainty treatment. The 30%’s chance of
occurrence uncertainty is modeled as a betaPERT distribution as shown in the left-hand panel of Figure
2-18. A Yes/No distribution is defined with the probability of yes linked to the 30%’s uncertainty forecast as
shown in the center panel. The $50K’s impact uncertainty is modeled as a lognormal as shown in the right-
hand panel. The complete guidance system first unit cost (cell F112) that flows through the remainder of the
estimate is modeled as the sum of the baseline (cell F113 which is also uncertain) point estimate and the
result of the product of the Yes/No cell and the $50K’s uncertainty cell (cell F114 = F123 * AE125).

Uncertainty should be applied to both the risk register cost impact and the probability of occurrence.
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Some considerations:

Figure 2-18 Discrete Uncertainty Example

e Model the risk register events to directly impact the relevant elements as illustrated in Figure 2-2.

e If the risk register event is highly probable, consider including its full impact in the point estimate
and model the lower likelihood of it not happening as the risk register event.

e When modeling uncertainty on a negative, the meaning of low and high can become confusing and
for some distributions (like lognormal) impossible to define with the appropriate skew. In this case,
consider modeling the value and its uncertainty in positive terms, but then subtract the results from
the applicable element within the model.

e Keep in mind risk register items may have been encountered by the programs in the database and
may already be captured by the uncertainty of the CER.

e Model the impacts of risk register events to duration variables where applicable.

e No risk register is comprehensive. Keep in mind there may be other sources of discrete risk in the
program that should be modeled.

2.7.3 Modeling Risk Register Event Mitigation

The inclusion of risk mitigation plans often introduces additional cost elements into the cost estimate. This
has the effect of “adding to” the initial cost estimate. However, the presence of these risk mitigation plans

should have an impact on the uncertainties or risk register events assigned to the WBS elements that they
address. For example, spending money to mitigate the cost impact of the guidance first unit failure risk may

cause the event impact to be reduced, eliminated and/or the probability of occurrence to be reduced.

Risk register items are modeled as discrete events.
Exercise care to not double count risk.
Items to be modeled as discrete events are not limited to those obtained from the risk register.
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2.8 SPECIAL UNCERTAINTY CONSIDERATIONS

2.8.1 Truncating Objective or Subjective Uncertainty

In cost estimating, it is not unusual to obtain objective or subjective bounds that cause the distribution shape
to stretch into the negative region (below zero) despite never observing a value in that region. As discussed
in the fit distribution section, analysts may choose to force a lower bound when performing the fit.
Alternatively, an unconstrained fit that stretches into the negative region can be truncated when used in the
simulation tool. Employing distributions that include values less than zero is discouraged unless there is
compelling evidence that negative values are a reasonably expected outcome and the model will perform
properly. All tools provide the ability to truncate distributions at either a low point, high point or both.

Establishing the lower limit of the distribution to be zero will avoid nonsensical situations of negative dollars
in cost elements or negative weight, power, volume, etc. in CERs. There are two significant impacts to be
considered when truncating at zero. First, the distribution variance will be reduced and, second, the mean
will shift to the right. Care should be taken to determine the impact and if it is acceptable. However, in
situations when negative tails would represent nonsensical outcomes, the analyst is encouraged to either
truncate or select a distribution, such as lognormal, that does not require truncation to simplify the
explanation of the model.

Truncate distributions at zero unless there is evidence to do otherwise,

2.8.2 Sunk Costs

Costs that have been incurred and cannot be recovered are called sunk costs. Further, for many acquisition
decisions, funds that have been authorized and obligated in prior years are often deemed sunk though they
have not been quite yet expended. Sunk costs are often part of a life cycle cost model because current and
prior years are part of a system’s total cost. Prior years’ costs (and often current year’s costs) should not
have uncertainty distributions associated with them. In any event, it is essential to report both sunk and cost
to-go when reporting cost in order to facilitate comparisons to project estimate at completion and previous
estimates.

Updating an estimate to include sunk costs requires a firm grasp on the difference and the appropriate source
for cost associated with government obligations and expenditures. When our cost estimate (like the example
model) is built to support the budgeting process, it will be in terms of obligations. Sunk costs added to an
obligation cost estimating model must reflect obligation dollars, not government expended nor contractor as
expended. The best source for government obligation or expenditure data comes from the government
financial execution branch. If utilizing expended dollars, the expenditures need to be traced back to the
obligation year and applied as sunk costs for the obligation year in the cost estimate. The sunk costs should
be entered as TYS in the year of obligation. When using actual cost of worked performed from contractor
reports (CPRs or CSDRs) as a source for sunk costs, be aware that these sources represent the accruals on the
contract and may not include the information necessary to trace the cost back to the obligation year. If using
these data sources, the analyst has the burden of determining how make adjustments so that the accruals can
be properly entered as a sunk cost into an obligation estimate.

When sunk costs are in play, addressing uncertainty can be complicated. There are many ways to approach
the modeling task. In most cases, the assessment of uncertainty is based on an analysis of total costs, not on
costs to-go from some point in the project. Subtracting the sunk costs from the total cost estimate to arrive at
cost to-go may make sense. But defining how much of the uncertainty was retired in the cost to-go portion is
more difficult to assess.
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The following process is recommended for addressing sunk costs assigned to a specific element in the risk
and uncertainty model:

e Every effort should be made to estimate the cost to-go based upon the best assessment of current
circumstances. Noting that the total point estimate changes (sunk + cost to-go may not equal the
original total point estimate cost) should not discourage using this approach.

e Divide the original uncertainty parameters by the point estimate cost to convert parameters to a
percent of the original total point estimate.

e Use these results to calculate the uncertainty parameters for the uncertainty on the cost to-go. Use a
distribution of the same shape, but scaled to the cost to-go.

e If possible, obtain evidence to determine if the sunk costs are consistent with progress to-date.
Ideally, this assessment should be data-driven, for instance through analysis of EVM data. However,
it may be necessary to resort to expert opinion. If the evidence is compelling, consider multiplying
the scaled uncertainty by a CER adjustment factor as described in Section 2.8.6.

e Determine if any risk register events associated with the element have been retired or need to be
included in the assessment of the cost to-go.

To illustrate this process on one element, Design and Development, two years of sunk cost are assumed. In
the example model, the estimating structure is modified so that Design and Development is the sum of sunk
and to-go costs. The sunk costs are throughput ($2M in 2014 and $3.6M in 2015) and the to-go cells
compute as before. In the inputs section, two uncertain items have been retired. First, the EMD start date is
now known with certainty (fixed as May 1, 2014). Second, the Risk Register Item #2 concerning an
alternate guidance section did not happen and has been retired. Since duration is an input parameter, it is
now comprised of sunk months and to-go months. Similar to the modified cost estimating structure, the
input parameter structure is modified so that EMD duration is the sum of sunk months and to-go months.
The point estimate duration in this example is the original duration minus the sunk months. The bounds on
the duration uncertainty distribution were converted to percentages. The changes to the model are shown in
Figure 2-19 and the resulting s-curves are shown in Figure 2-20. Note the total CV is reduced with the
inclusion of sunk costs.

Sunk costs should not have uncertainty distributions associated with them.
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B c E F G H | J K L
Point Forecast
DETAIL ESTIMATE based on PEs Unique ID Estimate | BY 2014 | 2014 2015 2016 2017 2018 2019
Design & Development Total DesignDev_EMD_Total $14,194] $14,194] s2.000] §3.600[ S2400] $2400] $2.400] §1.394
Design & Development Sunk __|DesignDev_EMD_Sunk §5.600] $6.600L» $2.000]  §3.600
Design & Development To Go S«aigglev EMD ToGo §8.594] )97 524000 52400 52400 5$1.3%4

Change Element Structure Sunk Costs To-go Cost Cell
to Sum of Sunk and To-go | Throughput Formulas Unchanged |

Uncertain EMD
Start Date Retired

[ Sunk Duration

B c E F C AD AE AG AH Al AK

. Point Distribution Point Uncert i Percent | Percent
46 INPUT VARIABLES Unique ID Estimate st Form Estimate is: | ainty Low High ile ile
51 EMD Modeled Start Date EMD StartDate  \ 01 May 2014] 01 May 2014
52 EMD Modeled Start Month EMD_StartMth \ 5 5
53 EMD Modeled Start GFY EMD_StartGFY \ 2014 2014
&4 EMD Fraction of First Year EMD FirstYearFraction \ 04192 04192
55 A\!
56 EMD Duration (Months) EMD_Mths N 60) 60.000
57 ___EMD Duration Sunk (Months) N 17| 17.000
58 __EMD Duration (Months) PE Duration EMD_MthsRaw Ad3 43| Triangular Mode 0.90/ 1.20 10 80)
59 EMD RR Dur Incr Due to SW (Months

Remaining Months
Scaled Uncertainty
L Bounds

Point Estimate of
Remaining
Months

Risk Register Item
Retired

Figure 2-19 Sunk Cost Example
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Figure 2-20 S-Curves for Sunk Cost Example

2.8.3 Engineering Change Proposals (ECPs)

ECPs are the result of controlled, approved changes to the scope (requirement, design, etc). It is extremely
rare for a project to proceed through the acquisition cycles without a single ECP. In any case, the ECP cost
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element is not meant to be the catchall for potential system cost growth or a place to allocate risk dollars. It
is, therefore, not acceptable to use it as a place to bump-up management reserve or as a substitute for risk
analysis. It is, however, appropriate to assign uncertainty to the method by which the ECP costs are
estimated.

When ECPs are modeled as an element in the point estimate WBS, that uncertainty should be applied in a
manner consistent with the method by which the element is estimated. Furthermore, care should be taken not
to double count if discrete risk register items have already addressed possible new scope.

2.8.4 Inflation

Cost models that are heavily influenced by the uncertainty associated with labor rates, unit prices or other
similar cost drivers may, in fact, already capture some degree of inflation uncertainty, depending on how
their uncertainty is estimated. The point is, be careful not to double count inflation uncertainty if there are
methods in the model that already capture at least some part of it.

If there is data to demonstrate that the inflation rate for a specific commodity is significantly different from
the published inflation, then that difference should be captured in the uncertainty analysis. While many
references propose approaches to defining inflation uncertainty, there is no current consensus and this
handbook does not recommend a specific approach.

OSD published rates from 1995 through 2012 were used to calculate the constant year factor to inflate from
1993 to 2011. Figure 2-21 shows the factor obtained from each of the eighteen published tables. The image
on the right illustrates the percent the factor is under-estimated (positive numbers) and over-estimated
(negative numbers) when compared to the result using the 2012 tables (which should contain the actual
inflation for this period). Over the past fifteen years, the error varies between plus and minus a few percent.
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For Ditterant OSD Publishad Rates
25% I I
0.0% O . = B m,

o3 g ¥ al =gm
25%
5.0%
T5%

1995 1996 1097 1098 1090 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 - 1995 1996 1997 1008 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year of OSD Table 05D Inflation Table Published Ysar

1550

350

.
= o
= a8

300

%

1250

Constant Yaar Inflation Factor to Inflate From 1883
I
= @ oo
=2 & a

3

1050

, Percart Tha 2012 Factor is Differant than the Published Factor

8

1.000

Figure 2-21 Comparing Forecasted and Actual Inflation Rates

More important than assessing the stability of the OSD rates is comparing the rates experienced and
projected for a specific commodity and comparing them to the mandatory OSD rates. Year-by-year
differences can lead to a compounding effect that could prove significant.

There are many papers on the treatment of inflation uncertainty analysis, for instance Reference 68 and 81.
Reference 81 proposes an approach where an uncertainty distribution is assigned to each year and they are
correlated with each other in decreasing strength the further the rates extend into the future. The application
of their seven-step process in an example calculation spanning nine years concluded that inflation added
10.95% to the total and the uncertainty analysis suggests that 11.15% (0.2% more) may be more appropriate.
This is additional evidence that even sophisticated methods have not demonstrated that inflation uncertainty
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has a dramatic impact on the simulation results. The analyst is encouraged to continue to look for additional
guidance on this topic.

2.8.5 Defining Uncertainty for Cost Improvement Curve (CIC) Methodologies

Cost improvement curves (also known as learning curves) are a source of uncertainty that must be modeled.
While all the uncertainty principles presented thus far in the handbook apply, there are additional issues to be
considered when CIC methods are employed. For example, consider the unit theory CIC curve equation:

Equation 2-2 Unit Theory CIC Curve Equation
Unit Cost=T1 *Q"Db
where

T1 is the theoretical first unit cost
Q is the unit number
b is the exponent associated with the given CIC slope (b = log(Slope)/Log(2))

As in the case with all other cost estimating methodologies, uncertainty on CIC methodologies should be
based on historical data when possible. If 7/ and b are established by regression analysis, then the
regression equation gives rise to the point estimate and the equation’s uncertainty should be modeled. The
statistics from the regression analysis can be used to objectively define the uncertainty of the equation as a
whole as with any other CER. In this situation, however, uncertainty should not be modeled on the 7/ value
or the slope value since they were solved by the regression and are not independent variables. This is how
CIC uncertainty is assigned in the example model.

However, in actual practice, the estimate for 7/ and the estimate for slope are often obtained independently.
In which case, the learning curve equation is simply a functional relationship with a point estimate of the 77*
and a point estimate of the slope as its inputs. Therefore apply uncertainty to each input value and not to the
equation. Note 7/ and b in our example model are highly negatively correlated and should be specified as
such in the uncertainty model if they are addressed separately. Omitting negative correlation between 7/ and
slope may overstate uncertainty.

Here are guidelines for three common situations:

e Obtain 71 and obtain slope from separate sources. If the 7/ is computed via a parametric
equation, use fit statistics from the equation to model its uncertainty. If the 7/ is an analogy or expert
opinion, then apply subjective uncertainty. If the 77 source does not have an inherent slope, it is
recommended to obtain a slope using historical data from multiple systems using pooled regression
and model its uncertainty based on the standard deviation on the b coefficient. A high negative
correlation between 7/ and slope is often appropriate.

e Compute a 71 from a single reference lot using a borrowed slope. If borrowing a slope from a
single analogous program or a group of similar programs, that slope was likely computed from a
regressed equation. Therefore, use the standard deviation on the b coefficient to define slope
uncertainty. If the slope is obtained via expert opinion, then apply subjective uncertainty. When
using a known reference lot cost, use this value as a model input and insert a row or cell to compute
the model’s 7'/ using the same slope used in the estimate. Doing so will enable each iteration of the
simulation to recompute the 7'/ given that iteration’s draw on slope. Consider using a high negative
correlation between 7/ and slope. If an adjustment factor is applied, such as a step function for
transition from prototype to production, then also apply uncertainty to the factor. Again, if the factor

* Throughout this section 77/ is used as the reference unit cost but refers to any reference value modeled such as UC10 or UC100.
Take care to use the same slope for each applicable computation (such as pivot calculations) throughout the model for each
simulation draw.
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is rooted in data, apply uncertainty as measured from the data; otherwise, apply subjective
uncertainty.

Compute both 71 and slope from the program’s prior lots. This is a straightforward use of
regression and uncertainty should be applied to the equation using fit statistics. Do not separately put
uncertainty on the slope or 77 as these are simply regression coefficients. However, if the analyst
believes the scatter in the prior lots does not fully address uncertain learning for future lots, then
subjective methods may be considered.

In summary, take care to not over specify uncertainty for CIC curves. Specify uncertainty on either the
learning curve equation, or on the 7'/ and b pair, but not both.

Here are some additional considerations:

Truncating slopes: The essence of learning curve theory is decreasing cost with increased
cumulative quantity. While occasionally history will show increases between lots this is likely due to
unique circumstances or incomplete lot normalization. It is recommended that distributions on slopes
be truncated at 100%.

Adjustment factors: Often a 7/ obtained from data is further adjusted to an estimate’s 7/ to account
for configuration or process changes. In this case, model the factor as a multiplier and assign
uncertainty to the factor. Adjustment factors are discussed further in Section 2.8.6

Broken learning, shift, rotation, displacement, etc.: Many programs have conditions necessitating
variations to the typical CIC curve. For example an analyst may utilize a steep slope early in a
program to account for material delays or exceptional amounts of rework with a flatter slope in later
lots to account for maturing processes. While every situation cannot be foreseen and addressed here,
the analyst is encouraged to model CIC uncertainty using distributions fitted to historical data
whenever possible but use subjective uncertainty when applicable data is not available.

Rate-adjusted learning: Consider the rate-adjusted CIC curve equation:

Equation 2-3 Rate Adjusted CIC Curve Equation

Unit Cost=TI *Q” b *R "¢

where 71 is the theoretical first unit cost at a rate of 1; Q is the unit number; R is the production rate;
b is the exponent associated with the given learning slope; and c is the exponent associated with the
given rate slope. All of the concepts discussed above apply. Consider a high negative correlation
between 7'/ and each slope.

Rate-adjusted CIC ridge regression: Sometimes multicolinearity between the cumulative lot
quantity and lot rate is present in historical data and gives rise to an unreasonable pair of regressed
slopes. The analyst may use ridge regression to mitigate the effects of multicolinearity and improve
the reasonableness of the results. If borrowing slopes from ridge regression results, be aware ridge
regression can result in a tiny standard deviation on the resulting coefficients. Therefore, consider
subjective uncertainty on those slopes.

Take care to not over specify uncertainty for CIC curves.
Specify uncertainty on either the learning curve equation, or on the 7'/ and b pair, but not both.
Unless there is strong evidence to do otherwise, truncate slopes at 100%.
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2.8.6 Adjustment Factors

CERs are developed from historical data where some technical characteristic such as weight or power is used
to estimate cost. Alternatively, subject matter experts may provide direct estimates based upon an analogy.
By doing so, it is assumed that the CER or analogy is applicable to a project being estimated. If, however,
there is compelling evidence that the CER or analogy on its own insufficiently estimates the cost for the new
project, an adjustment may be warranted. The best way to account for such issues is to revisit the cost
methods and find one that is more consistent with the new project. Unfortunately, this is not always possible
or practical. In the absence of better information, and when direct modeling is not feasible, an acceptable
approach is to multiply the estimate method by an uncertain factor.

In the example model, the new missile’s payload composition differs from the CER dataset such that an
additional 10% is added to the CER results This situation is modeled as:

(30.15 + 1.049 * WarheadWt) * PayloadAdjustment

where PayloadAdjustment has a point estimate of 1.1 and is the mode of a triangular distribution where the
minimum is 0.9 and the maximum is 1.5. The impact of the adjustment factor is illustrated in Figure 2-22.

Impact of Adjustment Factor on Payload
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Figure 2-22 Impact of an Adjustment Factor on Cost
This approach should only be used in cases where better information is unavailable. Some organizations
have developed their own standard multipliers and their uncertainty. See Reference 38 for an example.
2.8.7 Calibrated CERs

Analysts frequently rely on published, validated CER libraries to obtain a relevant estimating method for one
or more of the elements in their model. Whether drawing from a CER library or from an analysis of relevant
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historical data, an analyst may also discover a completed program from the CER’s dataset that would be a
suitable analogy. In these situations, the analyst may choose to calibrate the chosen CER to this known data
point. For an equation of the form Y=aX"b this means computing a new intercept (a) by fitting the same
slope (b) through the selected analogous data point.  The calibrated CER line will now pass through the
analogy. Ideally the data will be available to plot this calibrated CER against the original source data to be
comfortable that the shift in the CER line remains consistent with the source data. While this is a
straightforward way to obtain a more defendable point estimate, how should the original CER uncertainty be
adjusted to account for the recalibration? There are at least two ways to address this question:

e One view’ is that if there is evidence to support that the analogy is more similar to the system being
estimated than the average data point in the CER data set, then it may be reasonable to conclude that
the CER uncertainty should be reduced. One way to do this is to make use of the original regression
statistics. The uncertainty of the intercept could now be assumed to be zero. This would mean that
the uncertainty of the CER is now defined solely by the uncertainty of the exponent. After all, the
slope has been borrowed from the original equation, so it stands to reason the slope’s uncertainty
should be borrowed as well. A way to model this is to treat the exponent as another input to the CER,
and then specify the exponent as the mean of a lognormal with the exponent’s standard deviation.
The exponent’s standard deviation is typically available from the original regression report. Take
care to ensure the unit space values (rather than fitted space) for the exponent and its standard
deviation are retrieved from the regression report.

e Another view is that nothing has changed regarding how the CER was developed. The interaction of
the intercept and the exponent uncertainty is not a simple one. The correlation between the intercept
and exponent is integral to the overall CER uncertainty. Simply shifting the CER to pass through the
analogy does not change the CER's uncertainty. The uncertainty applied to this new point estimate,
on a relative scale, may be the same, but it will yield a different s-curve that should be more
defendable.

There are other ways to estimate the uncertainty of a calibrated CER and the analyst is encouraged to explore
the literature on the subject. Choosing the right path may lie, in part, by assessing where the analogous point
lies within the original dataset.

2.8.8 Uncertainty on Fee

When Fee and other contract loadings such as G&A and Cost of Money are modeled as variables they will
need uncertainty assigned unless they are known to be fixed. Consider fixed bounds as these variables truly
do not have long tails.

> Dr Christian Smart provided a detailed discussion on this approach on pages 97-99 of Reference 80.
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3.0 FINISH AND ASSESS THE CISM MODEL

3.1 THE SIMULATION COMBINES UNCERTAINTIES

The purpose of the simulation is to combine all the uncertainties specified in the model to estimate the total
uncertainty at the parent levels. Figure 3-1 illustrates how the simulation process combines the input
uncertainty with the CER uncertainty for a specific element in the model. Each trial of the simulation makes
a random draw from all the risk and uncertainties in the model to generate a point estimate. The result of
each WBS element is summed to develop simulated results at the parent levels.

Y Combined Cost
CER Modeling
Result Uncertainty and CER Upper .
_Technical Risk Bound

£ ~N(u,a°)

o and P are parameters

Range of Estimates

-~ |
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Figure 3-1 Combining Methodology and Methodology Input Uncertainties

A critical part of the simulation model is to define the correlation between each of the distributions in the
model. For instance, if a random sample from one distribution is taken from the high end of the distribution,
is there any reason to expect others would be drawn in a similar way? The level of correlation in a model
has a profound influence on the results and will be addressed in the following sections.

3.2 FUNCTIONAL VERSUS APPLIED CORRELATION

The term functional correlation has been in the lexicon since at least 1994 (see Reference 17 and 19) and yet
it is largely misunderstood. Essentially, it is referring to the correlation that is developed in the simulation
due to the mathematical (functional) relationships within the model. Uncertainty that is defined on a variable
or assigned to a CER will be inherited by any relationship that uses them in its equation. Functional
correlation can exist between:

e CER inputs if these inputs are in fact a function of each other.
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e CERs if the CERs share one or more common input variables. A common mistake is to assign the
same uncertain slope to a variety of elements. This causes these elements to be correlated in the
model.

e Two or more CERs if one CER is related to other CERs (for instance through a factor relationship).
e A CER result and the uncertainty of its input(s).

A good rule of thumb is if the relationship between uncertain elements in the model is known, then capturing
that in the functional relationships should be attempted. For instance, if the motor weight is known to be a
function of the air vehicle weight through an engineering or regression result, then this relationship should be
explicitly implemented in the model rather than allowing the elements to behave independently in the model.
This simplifies what-if analysis and improves the chances of the simulation behaving properly.

If there are no known functional relationships to employ, every simulation tool will allow correlation to be
applied. Applied correlation is when the analyst specifies a correlation between two or more uncertainty
distributions. It is also possible to apply additional correlation across functionally correlated items. The
applied correlation does not replace the functional correlation. The net effect in the simulation is the
combined correlation. The net effect is not linear, but it can be measured.

Most simulation models contain a mix of both functional and applied correlation.

3.3 MEASURE THEN APPLY CORRELATION

3.3.1 Overview of Correlation Assessment

The uncertainty analysis is not complete until correlation is assessed. If correlation is ignored, the variance
at the total levels in the estimate will be understated, in most cases dramatically. The results of the first
simulation run can be used to measure the correlation already present in the model due to mathematical
relationships. If uncertainty is applied to the factor (or other methods) used to establish a functional
relationship between elements, then the correlation between the elements will not be perfect (correlation
coefficient will be less than 1.0).

For many situations, the correlation will not be adequately captured by functional relationships. In these
cases, additional correlation needs to be applied. The recommended approach is to create a few large
correlation matrices rather than many small ones. A correlation matrix is an efficient way to define all the
correlations amongst a group of defined distributions in the model. The diagonal of the matrix (from upper
left to lower right) is populated with ones to define the correlation between each distribution in the group and
itself. Only half the matrix need be specified as the other half (other side of the diagonal) is a mirror image.
When building the correlation matrix, there are several issues to consider:

e Consistent Matrix: Care must be taken to populate the matrix with a consistent set of correlations.
For example, if A:B and B:C are highly correlated in a positive direction, then assigning a strong
negative to A:C would cause an inconsistency.

e Inconsistent Matrix: When Crystal Ball or @Risk detects a correlation matrix that is inconsistent
enough to prevent the simulation from running, they will offer the option to adjust correlations
enough to allow the simulation to proceed (ACE does not allow the user to enter an inconsistent
matrix). These tools use different methods and there is no user control. If a consistent matrix is not
specified, then complex mathematical algorithms are applied to transform the specified matrix into a
consistent matrix that may vary significantly from the original analyst-specified matrix. It is
recommended that when inconsistent matrices are encountered, they are repaired manually rather
than letting the software attempt it. Review the tool’s recommendation for guidance on where to
make adjustments.
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Repair an inconsistent matrix manually rather than let the software attempt it.

Empty Correlation Matrix Cells: Crystal Ball allows the user to leave cells in the matrix blank.
Crystal Ball will “fill in” the blank cells. If the top row (upper triangle) of the matrix is fully
populated and the remainder empty, the math Crystal Ball uses to fill in blanks is known and easy to
understand. If random cells are blank, it is unclear what Crystal Ball does. For that reason, @Risk
requires all cells to be populated. ACE treats an empty cell as zero. It is recommended that every
cell in the matrix (the half being using) be populated.

Linear Relationship: Correlation is a measure of the linear relationship between random variables.
Correlation does not prove a cause-and-effect relationship. Generally, there is little empirical basis
for the derivation of the correlation values. Consequently, correlation is often based on subjective
judgments (see Reference 25, 26).

Impact on Functional Correlation: Most estimates do contain many elements that are functionally
related through linear and non-linear methods. This often causes uncertainty distributions to be
multiplied, divided, exponentiated, etc. For this reason, correlation applied on functionally related
uncertainty distributions will have an impact not only on the spread of the parent, but the mean as
well. This is why applying functional relationships (rather than simply adding throughputs) within a
model wherever possible is so important: it can have a significant impact on the mean of the ultimate
uncertainty distribution.

Measure First: Before applying correlation, measure the correlation present due to functional
relationships. Knowing what is present will help determine what needs to be applied.

Measure the correlation present in the model first, then apply additional correlation where required.

3.3.2 Metrics for Assessing Correlation Adequacy

In the absence of objective data, analysts are encouraged to make subjective correlation assessments using
the following steps:

1.

Measure the correlation present in the simulation due to functional correlation and identify those
elements with a correlation of less than 0.3.

Determine if specific elements should “move together,” that is, be correlated either negatively or
positively.

Assign additional correlation using a correlation value between -1 and +1. Table 3-1 provides
guidance on default correlation values. Perfect correlation of +/-1.0 is discouraged.

Several references (20, 21, 22, 27, and 47) suggest a default correlation of 0.25 when there is no other
information. However there are others that provide evidence that 0.45 may be more appropriate (70, 80).
Reference 80 also reports the result of several cost data-driven investigations that supports a default closer to
0.3. In the absence of better information, 0.3 is the recommended default.
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Table 3-1 Default Correlation Factors

Strength [Positive [Negative
None 0.0 0.0
Weak 0.3 -0.3
Medium 0.5 0.5
Strong 0.9 -0.9
Perfect 1.0 -1.0

In the absence of better information, 0.3 is the recommended default correlation.

3.3.3 The Impact of Correlation on a Cost Model

Only two statistics in the cost model will sum up through the WBS indenture: the mean and the variance. In
the case of variance, it will only sum to the parent level variation if the uncertainty distributions are
independent. However, if they are correlated either through functional, applied or both types of correlation,
the total variance can be calculated using the following equation:

Equation 3-1 Total Variance Adjusted for Correlation

i n k-l
TotalVariance =) 63 +2> .Y p,0.0,
=1 = 71

Where o is the symbol for standard deviation and p is the correlation coefficient. Figure 3-2 demonstrates
the impact of correlation on the sum of five random variables and compares Crystal Ball simulation results
with analytical results. Figure 3-2 contains the following:

Analytical results for the mean and standard deviation (method of moments). See Appendix A.6 for
the formulas used in Figure 3-2 to calculate the mean and standard deviation for these (and other)
distributions.

The top image shows the results when the correlation is forced to be zero, meaning each distribution
is sampled independently from any other.

In the bottom image, a correlation of 0.3 is applied across all elements. In this case, the simple sum
of the variances underestimates the total standard deviation by 46% (106.7 / 73.0)!

Applying the correlation to these five throughput uncertainties results in no impact on the mean. In a
functionally correlated model, applying correlation on top of functional correlation will influence the
mean a few percent (Reference 53).

Element standard deviation is adjusted for correlation using (SD*MMULT(CorrRow,SDCol))"0.5
where SD is the standard deviation in question, CorrRow is the row in the correlation matrix
associated with SD and the SDCol is the column of all five standard deviations. MMULT is an Excel
function that performs the necessary matrix multiplication (row times a column).

Note that for zero correlation (upper table) the simulation, analytical without adjustment and
analytical with adjustment all match. In the lower table, only the analytical standard deviation
adjusted for correlation matches the simulation result.
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Parameters Simulation Analytical
_ std | Std Dev|S1d P&V . .
Total is the sum Min [Max | Mean [Std Dev| CV | Mean .| Adj For Applied Correlation
Dev No Adj Corr
Total 500 575 73 0.13 575 73 73 0.000| LN Tri [BPERT Nor | Unif
Lognormal 100 40 100 40 0.40 100 40 40 LN 1.000| 0.000| 0.000| 0.000] 0.000
Triangular 100 75 | 200 125 27 0.22 125 27 27 Tri 0.000| 1.000| 0.000| 0.000| 0.000
BetaPERT 100 75 [ 200 113 22 0.19 113 22 22 BPERT 0.000 0.000] 1.000| 0.000| 0.000
Normal 100 35 100 35 0.35 100 35 35 Nor 0.000 0.000 0.000| 1.000| 0.000
Uniform 100 75 | 200 138 36 0.26 138 36 36 Unif 0.000 0.000 0.000 0.000] 1.000
Parameters Simulation Analytical
. Std ) Std Dev Std. Dev - .
Total is the sum | o, | Min [Max | Mean |Std Dev| CV | Mean |\ . /| Adj For Applied Correlation
J Corr
Total 500 575 107 0.19 575 73 107 0.300( LN Tri [BPERT Nor | Unif
Lognormal 100 40 100 40 0.40 100 40 55 LN 1.000| 0.300| 0.300]| 0.300| 0.300
Triangular 100 75 | 200 125 27 0.22 125 27 42 Tri 0.300| 1.000| 0.300| 0.300| 0.300
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Figure 3-2 Impact of Correlation of 0 and 0.3 on Elements that Sum

Correlation is an important part of the simulation model. The more distributions in the model, the more
important it is to assign correlation in an appropriate manner. Figure 3-3 illustrates the impact of breaking
up an estimate into a greater number of uncertain elements on the total uncertainty. The upper tables
calculate the standard deviation at the parent level assuming there is no correlation. In Excel this can be
done using the formula SumSq(StdDev)"0.5 where StdDev is the Excel range containing the child element
standard deviations.
increase. In this model, child CV would have to increase 60% going from two elements to five and another
40% to go from five elements to ten. If the elements are correlated, the effect is significantly diminished.

To preserve the CV at the total level, the CV of the child elements would have to
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Figure 3-3 Impact of Adding Correlated Uncertain Elements
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In the bottom table of Figure 3-3, each standard deviation is adjusted to account for correlation as described
above. Adding 0.3 correlation almost doubles the CV in this example summing ten elements. The impact is
even greater with larger numbers of elements.

Cost estimates are broken into a greater number of elements in order to improve the estimate accuracy and
provide more flexibility for trade-off studies. However, as shown in Figure 3-3, doing so will cause the
parent CV to reduce unless the child CVs are increased. It is reasonable to expect that breaking the estimate
into more elements could reduce the overall uncertainty. However, breaking the estimate into more and
more sub elements should not be done indiscriminately simply to reduce the parent CV. For instance,
consider an auto fuel cost estimate where the CV was found to be 0.25. Proposing to fill half the tank in the
morning and the other half in the afternoon (same location, same day) might break the estimate into two
parts, but should not be used as a way to reduce the total CV to 0.18 (per Figure 3-3). This would be an
example of where perfect correlation should be applied between the two filling events to preserve the
original CV at the total.

The importance of correlation increases with the number of elements involved.

3.3.4 How to Measure Correlation

Tools such as Crystal Ball and @Risk report the correlation entered and the correlation actually used when a
correction for inconsistency is required. The tools provide the capability to extract a spreadsheet containing
each iteration result for any forecast in the simulation. Once these data are properly sorted in the worksheet,
Excel’s CORREL function can be used to calculate pairwise correlation. Performing the calculation on the
actual values will return the Pearson Product Moment (PPM) correlation. Converting the data to ranks first
and then using Excel’s CORREL function will yield the Spearman Rank Correlation. ACE contains a
correlation report that will show the PPM correlation between user-selected elements of the estimate. @Risk
includes a function to measure correlation between any two distributions (input or forecast).

Figure 3-4 illustrates the results when measuring the correlation across WBS elements in the example model
simulation before any correlation is applied. The result shows the functional correlation present in the
model. The elements of Production have been rearranged to produce Figure 3-4 in order to make it easier to
see the nature of the functional correlation in this phase of the model. Training, Data and Initial Spares were
modeled as a factor of the Air Vehicle cost. Not only does this account for the functional correlation
between them and the Air Vehicle elements, but since they are estimated off of a common element (Air
Vehicle) they are also correlated amongst themselves. Unless there is evidence to do otherwise, since the
correlations between them is very close to 0.3 (our default), no further correlation is necessary for those
specific elements. It may be seen, however, that there is a need to consider correlation between the Air
Vehicle elements and the elements that are estimated as a function of duration due to the lack of functional
correlation. The elements that are a function of duration are not showing any correlation because in this
model the leadership directed that there be no production duration uncertainty.
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MEASURED CORRELATION ACROSS PRODUCTION WBS ELEMENTS
-
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Figure 3-4 Measured Production Correlation Before Correlation is Applied

3.3.5 Applied Correlation Example

In the previous section, correlation within the Production phase was measured to help identify where it may
be necessary to apply additional correlation across the model’s input distributions. Where possible, it is
recommended that a few large matrices be created rather than many small ones. Our model is small enough
that both EMD and Production distributions can be defined in a single correlation matrix, as shown in Table
3-2. Guided by correlation measurement and knowledge of the model, elements should be put in an order
that help define correlations where they are appropriate. It may be alarming to some to see the large number
of empty cross correlation cells. In particular, in the case of the below the line (BTL) items (data, training,
spares, etc.), if the same team is performing those functions, it may be appropriate to capture them in one
large group by populating the gray cells in Table 3-2.

Table 3-2 Example Model Applied Correlation Matrix
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EMD RR1 SWinchm 1.0[ 03] 03] 03] 03] 03] 03] 03] 03] 03] 0.3 03] 03
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Applying correlation in any of the tools augments, rather than replaces, the functional correlation that is
already present. The upper table in Figure 3-5 shows the functional correlation across the production
elements in the missile example before any additional correlation is applied. The lower table illustrates the
impact on measured correlation when the matrix in Table 3-2 was applied. The impact on the missile
production uncertainty results is also shown. Note that the functional correlation associated with Training,
Data and Initial Spares increases even though no additional correlation is applied to those elements
explicitly. They increase because of the correlation applied to functionally related elements (Air Vehicle
elements and their weights).

MEASURED CORRELATION ACROSS PRODUCTION WBS ELEMENTS
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Figure 3-5 Impact of Applied Correlation On Top of Functional Correlation

Two excursions on Table 3-2 were performed to measure the impact of adding additional correlation. The
first excursion populated all the gray elements in Table 3-2. The original matrix contained 115 correlations.
In this first excursion, an additional 71 were applied (60% more correlations). As shown in Figure 3-6,
adding the 71 additional correlations had almost no effect on the S-Curves. In the range 30 to 70 percent
probability, the impact was less than 1%. This is because the use of factor methods already introduces
significant correlation, obviating the requirement for more. In the second excursion the entire matrix was
populated, adding three times the original. The impact is noticeable, but less than 3% in the 30 to 70 percent
probability range. The implication of these excursions is that a well-organized correlation matrix may only
need to be 25% populated (115 out of a possible 464) to capture over 95% of the fully populated scenario.
This approach will also help avoid inconsistent correlation matrices.
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Change to the Program Estimate

Comparelmpact of Adding Correlations
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Figure 3-6 Impact of Adding Additional Correlations

Measure the correlation present in the model WBS first then determine what should be applied.
Create a few well organized, large correlation matrices rather than many small ones.
Repair inconsistent matrices rather than letting the tool attempt to find a solution.

3.4 OTHER INFLUENCES ON SIMULATION RESULTS

3.4.1 Random Seed and Random Number Generators

The random seed is a number that initializes the selection of numbers by a random number generator. Given
the same seed, a random number generator will generate the same series of random numbers each time a
simulation is run. Both Crystal Ball and @Risk, by default, pick a different random seed each time the
simulation runs. To avoid this, an initial random seed may be set by the user. However, if the location of
various assumptions is changed on the worksheet, answers will still vary. Additionally, if other workbooks
are open that contain separate models, this can influence the random seed assignments. ACE assigns a
random seed to every uncertainty assumption and it is saved with the model. When the assumption is
moved, the random seed moves with it and, therefore, the random draw sequence is preserved.

Changing the random seed (either manually or by allowing the tool to do so) will cause the percentile results
to vary on the order of 0.5%. Consequently, it is not possible to get precise matches across tools since each
uses a different random number generator and different methods for assigning random seeds.

3.4.2 Simulation Sampling Method

Some tools allow the user to choose either Monte Carlo sampling or Latin Hypercube sampling (see
Appendix A.10 for details). Latin Hypercube draws random numbers more evenly and it will generally
require fewer trials to obtain the same level of accuracy. We recommend that the number of partitions equals
the number of trials when using Latin Hypercube sampling. @Risk and ACE do not have a user setting for
the number of partitions; both fix the number of partitions to the number of trials.

3.4.3 Number of Trials (Iterations)

The number of trials required to achieve reasonable accuracy is a function of how many distributions are
defined in the model, the degree of uncertainty applied, and the amount of applied correlations.
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Reference 9 and 23 suggest that 10,000 trials are sufficient for cost uncertainty models and this number is a
common standard throughout the cost community. Most simulation tools have a feature to stop the
simulation when selected convergence criteria are met. For instance, both Crystal Ball and @Risk will test
the mean, standard deviation or a selected percentile to determine when the statistic is estimated to be within
a user defined percent of its actual value for a specified confidence level. However there are no known
standards and there is no persistent record of how the test Progrars Bemate

behaved at lower or a greater number of trials. Missile TY - CB

CV=0.214

A tool-independent Excel-based utility is available that
provides a visual cue to model convergence. It begins with
a 10,000 trial simulation. Then the statistics of interest (in
this case the 50 percentile, 70 percentile and 90 percentile
of Production) are calculated from the first 100, 200, 300
etc. trials and compared to the 10,000 trial result. The
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Reference 59. Investigation demonstrated that performing N cv=0215

separate runs with different random seeds (rather than
collecting all the data from one 10,000 trial run) made little
difference to the results. = The example model built in
@Risk, Crystal Ball and ACE was used to demonstrate tool
independence. Extracting the simulation data from each
tool to the utility demonstrates similar behavior as shown Lot S Mo DT B e,
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production results within 0.5% of the 10,000 trial result. oo Tve aCE
However, relatively few iterations (500) still produces Voo
results within a few percent and this is more than sufficient
for use while building and testing the model. Even if the
model takes no time to run 10,000 trials, running the
convergence utility is important to verify that the model
converges at all. When CVs are very high and/or in the
presence of many applied correlations, it may be necessary
to run more than 10,000 trials to create the final milestone
estimates.
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Figure 3-7 Compare Convergence Test Across
Different Tools

Simulation settings such as type (Monte Carlo vs. Latin Hypercube), sampling, random seed, correlation
on/off and similar settings will have an impact on the simulation results.
These and similar settings may not be saved with the model file.
Agencies are encouraged to publish recommended settings for each tool that is used.
Perform a convergence analysis to verify the number of trials required to develop a stable result.
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3.5 REVIEW AND INTERPRET RESULTS WITH CORRELATION APPLIED

3.5.1 Recommended Simulation Settings to Promote Consistency

Simulation tools are unique and each comes with their own various default settings and assumptions. To
ensure simulation results are persistent between runs and workstations, the following default settings are
recommended:

Sampling Method: Latin Hypercube or Monte Carlo.

Trials: 10,000 trials are recommended unless a convergence process demonstrates fewer are
acceptable.

LHC Partitions: ACE and @Risk do not provide control over LHC partitions. Both these tools
automatically create the same number of LHC partitions as trials. To facilitate comparison across
tools, we recommend that as the standard.

Random Seed: Every tool requires an initial random seed to begin the simulation process. Allow
the tool to generate the random seeds. But when locking the estimate results is desired, select a tool-
generated value for the random seed. Unless one is selected, each simulation run will be different.
For Crystal Ball and @Risk, moving cells, inserting or deleting distributions, or adding an empty
correlation matrix can change the random seed assignments throughout the model. ACE assigns and
retains the random seed assigned to each distribution (the user can delete them and allow ACE to
repopulate the random seed assignments).

Stop on Convergence: Every tool uses a different approach to assess the stability of the model. It is
therefore recommended that a tool-independent utility like the one introduced in Section 3.4.3 be
deployed for use within a given agency.

If the tool’s guidelines are followed, the analyst will obtain the same CISM results regardless of which tool is

used.

Figure 3-8 illustrates the same results from three different tools in the form of a cumulative

distribution function (CDF) for the missile model.
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Figure 3-8 Compare Risk Analysis Results from Several Tools

3.5.2 Comparing Simulation Results

If the point estimate is found to behave appropriately, it is useful to run several simulations to get a sense of
the contribution of key risk and uncertainty elements in the model. Figure 3-9 illustrates how the s-curve
gets steeper as schedule uncertainty, risk register elements, correlation, and CER uncertainty are
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systematically removed from the model (the steepest curve representing uncorrelated input uncertainty). The

respective CVs are: 0.216, 0.188, 0.186, 0.116 and 0.076. This type of comparison provides evidence the

model is behaving as expected. Figure 3-8 reports the CV of the Missile total to be 0.215 while Figure 3-9

reports 0.216. This is the difference between simulation results in BYS (Figure 3-8) and TY$ (Figure 3-9).
Missile System

Calculated with 10000 iterations
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Figure 3-9 Compare Impact of Key Risk and Uncertainty Elements

Construct the model to easily switch off the schedule uncertainty, risk register and correlation in order to
investigate the impacts of these key aspects of the model.
In order to move cost and uncertainty data to a FICSM model, it will be necessary to generate CISM results
with schedule and risk register contributions removed.

3.5.3 Interpreting the Simulation Results

Building a risk and uncertainty model is an iterative process. As the process proceeds, it is useful to examine
the coefficient of variation (CV) of the top-line of each phase of the estimate. Examining lower-level
elements is desirable; however, the range of acceptable CVs is much broader. In general, analysts are likely
to be able to compile meaningful ranges of acceptable CV for the overall estimate (by phase) by commodity.

The CV statistic is provided by all the common tools. The higher the CV, the wider the dispersion and the
flatter the s-curve. A low CV is indicative of a program with low or modest risks. A high CV is indicative
of a high-risk program. Often an extremely low CV is an indication of very optimistic uncertainty ranges or
a lack of correlation. Likewise, extremely large CVs may be an indication of unusually broad distributions or
too much correlation.

The NCCA S-Curve Tool (Reference 77) is available to compare an estimate to historical cost growth
factors (CGFs) and the CVs on the CGFs. Table 3-3 shows sample CGFs for historical programs by Phase
and Commodity developed from that source’s data. These are based on comparing initial and final SARs
and calculating cost growth factors (where 1.0 equals no cost growth) adjusted for quantity. The quantity
adjustment utilized the Fischer method which is the square root of the product of the CGF adjusting the
baseline estimate to reflect current quantities and the CGF adjusting the current estimate to reflect baseline
quantities. Table 3-4 shows the CVs on those CGFs. The analyst should examine CGFs and their CVs from
these two tables and the NCCA S-Curve Tool to assess the reasonableness of their estimate’s CV.
Practitioners are cautioned NOT to game their model in an attempt to match any particular value in these
tables because individual program conditions vary. But an explanation of an estimate’s CV far outside the
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range of values on these tables is warranted. CVs for estimates at Milestone A are not tabulated due to
sparse data but the source suggests CVs of 0.15 or higher than Milestone B CVs is reasonable.

Table 3-3 NCCA SAR Growth Factors: Since 1969/ Since 1980/ Since 1990 (Effective December 2011)
Mean Cost Growth Factor, RDT&E Estimates at MS B

Shlp# Aircraft A Space Electronics Vehicles All
Submarines Torpedoes
BYS$|AIl 1.35/1.36/1.18|1.65/1.72/1.89|1.62/1.62/1.78 1.43/1.47/1.47(1.40/1.40/1.41|1.75/1.52/1.47|154/1.54/1.62
Navy 135/1.36/1.18|1.99/224/2.63|1.23/1.15/1.21 (1.17/1.17/1.17(1.45/1.45/1.38|1.89/1.89/1.89|155/1.61/1.71
Air Force 151/144/153(157/119/1.24|1.45/153/153|1.10/1.10/1.04 1.41/1.30/1.36
Army 1.27/1.32/1.36 [ 1.95/2.12/2.35 1.37/137/1.25]|1.70/1.40/1.30 | 1.61/1.62/1.67
DoD 1.87/1.87/2.01 1.87/1.87/2.01
TY$|A 152/152/1241184/181/202|1.74/162/1.78|159/153/153|1.42/1.42/1.46|202/1.63/150|1.67/159/1.67
Navy 152/152/1241225/244/289|135/1.16/1.22 |1.23/1.23/1.23|1.47/1.47/1.44|201/2.01/2.01|1.71/1.72/1.83
Air Force 1.69/148/158(180/1.26/1.32|1.63/1.59/1591.10/1.10/1.04 1.56/1.33/1.41
Army 1.33/1.36/1.40 | 2.02/2.09/2.29 1.38/1.38/1.29|202/150/1.29 | 1.69/1.63/1.67
DoD 195/195/2.11 195/195/2.11
Mean Cost Growth Factor, Procurement Estimates at MS B
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 127/130/1.38|137/136/155|147/1.33/1.36|1.33/1.42/1.42]0.97/0.97/1.03|189/1.46/1.41|1.33/1.24/1.34
Navy 127/130/138]131/133/154|131/1.15/1.20|0.89/0.89/0.89| 1.25/1.25/1.25|0.95/0.95/0.95 | 1.28/1.25/1.35
Air Force 1.19/1.10/1.26|1.34/1.23/1.23|(1.40/1.69/1.69 |0.98/0.98/1.17 1.22/1.1471.29
Army 1.78/2.04/2.14|1.72/1.57/1.57 0.99/0.99/1.06 | 2.02/1.54/1.50 | 1.53/1.37/1.44
DoD 0.81/0.81/0.81 0.81/0.81/0.81
TY$|AI 147/149/1.78|155/133/151|189/1.37/1.38|1.48/1.41/1.41]0.98/0.98/1.06|2.38/156/1.48|1.57/1.28/1.38
Navy 147/149/1.78]148/1.32/153|160/1.18/1.15|0.92/0.92/0.92| 1.23/1.23/1.23|1.06/1.06/1.06 | 1.48/1.32/1.45
Air Force 1.30/1.07/1.22|1.63/1.24/1.24|157/1.65/1.65|0.96/0.96/1.15 1.37/1.12/1.27
Army 2.13/1.93/2.05|2.38/1.66/1.66 1.03/1.03/1.12|257/1.64/157 | 1.91/1.42/1.50
DoD 0.80/0.80/0.80 0.80/0.80/0.80
Mean Cost Growth Factor, RDT&E Estimates at MS C
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 1.19/1.20/100|121/121/113|1.26/1.27/1.08|186/194/138|1.17/1.19/1.19|1.30/1.30/1.30|1.27/1.28/1.16
Navy 1.19/1.20/100|137/137/121|117/117/105|1.12/1.12/1.12|1.13/1.13/1.09|1.84/184/1.84|1.25/1.26/1.14
Air Force 1.07/1.07/1.08 [ 1.10/1.11/1.15(1.94/2.04/1.41 | 1.03/1.04/1.04 1.26/1.29/1.16
Army 1.06/1.06/1.06 | 1.40/1.40/1.05 1.20/1.20/1.20|1.21/1.21/1.21 | 1.24/1.24/1.13
DoD 2.31/2.31/N/A 141/1.41/1.41 156/156/1.41
TY$|AlI 125/126/101|121/121/114|132/1.33/1.12|204/214/144]|121/123/1.22|135/135/1.35|1.31/1.32/1.19
Navy 125/126/101|136/136/1.23|1.10/1.10/1.06 | 1.13/1.13/1.13|1.18/1.18/1.13|191/191/1.91 | 1.26/1.27/1.16
Air Force 1.09/1.09/1.10(1.16/1.18/1.24 | 2.15/2.26/1.48 | 1.03/1.04/1.04 1.33/1.36/1.20
Army 1.07/1.07/1.07 | 1.56/1.56/1.08 1.23/123/123|126/126/1.26|1.31/1.31/1.17
DoD 2.31/2.31/NA 1.45/1.45/1.45 159/159/1.45
Mean Cost Growth Factor, Procurement Estimates at MS C
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 112/112/1.18|107/108/112|113/1.13/117 |157/165/1.10|0.99/1.03/105|1.11/111/1.11|1.11/1.12/1.12
Navy 112/1.12/1.18|1.09/1.09/106 | 1.12/1.12/1.08 | 1.03/1.03/0.94]| 1.06/1.06/1.12|1.36/1.36/1.36 | 1.10/1.10/1.11
Air Force 1.00/0.99/1.08 1.17/1.20/1.30|1.84/2.06/1.19 | 0.91/1.08/1.08 1.14/1.19/1.16
Army 1.24/1.42/1.42(1.08/1.08/1.13 0.99/0.99/1.01]1.07/1.07/1.07 | 1.08/1.09/1.12
DoD 1.01/1.01/1.01 1.01/1.01/1.01
TY$|AI 1.12/1.13/1.29|106/107/1.10|1.18/1.19/1.24|190/2.05/1.14]|1.06/1.11/1.13| 1.06/1.06/1.06 | 1.14/1.16/1.16
Navy 1.12/1.13/1.29]|108/108/105|1.16/1.16/1.12|1.04/1.04/092]|1.36/1.36/1.51|1.38/1.38/1.38|1.14/1.15/1.18
Air Force 0.99/0.99/1.08 | 1.25/1.29/1.41 | 2.33/2.72/1.25| 0.89/1.07/1.07 1.22/1.29/1.19
Army 1.19/1.37/1.37 | 1.14/1.14/1.21 0.95/0.95/0.961.01/1.01/1.01|1.06/1.08/1.10
DoD 1.03/1.03/1.03 1.03/1.03/1.03
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Table 3-4 NCCA SAR Growth Factor CVs: Since 1969/ Since 1980/ Since 1990 (Effective April 2011)
CV on Cost Growth Factor, RDT&E Estimates at MS B

Shlp# Aircraft A Space Electronics Vehicles All
Submarines Torpedoes
BYS$|AIl 0.42/0.46/0.25]0.86/0.94/0.95] 1.09/1.30/1.35| 0.48/0.50/0.50 | 0.47/0.47/0.39 | 0.45/0.27/0.28 | 0.82/0.89/0.95
Navy 0.42/0.46/0.25]1.04/1.09/1.04]0.32/0.23/0.24 0.48/0.48/0.46 | 0.16/0.16/0.16 | 0.81/0.89/0.95
Air Force 0.52/0.55/0.57 | 0.54/0.27/0.27 | 0.49/0.53/0.53 | 0.40/0.40/0.21 0.51/0.49/0.49
Army 0.35/0.41/0.44 | 1.34/1.43/1.44 0.48/0.48/0.25]0.52/0.27/0.26 | 1.04/1.12/1.23
DoD 0.38/0.38/0.30 0.38/0.38/0.30
TY$|A 0.56/0.62/0.27 | 0.93/1.03/1.03 | 0.96/1.18/1.23 | 0.58/0.54/0.54| 0.48/0.48/0.42 | 0.65/0.37/0.35| 0.82/0.88/0.93
Navy 0.56/0.62/0.27 | 1.08/1.16/1.10 | 0.42/0.22/0.23 0.49/0.49/0.49]0.17/0.17/0.17 | 0.88/0.98/1.03
Air Force 0.65/0.60/0.62 | 0.65/0.40/0.40 | 0.60/0.57/0.57 | 0.46/0.46/0.21 0.64/0.54/0.54
Army 0.34/0.41/0.44 | 1.17/1.31/1.33 0.47/0.47/0.28 1 0.75/0.43/0.35]|0.94/1.01/1.12
DoD 0.40/0.40/0.32 0.40/0.40/0.32
CV on Cost Growth Factor, Procurement Estimates at MS B
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 0.36/0.40/0.45] 0.44/0.51/0.45] 0.37/0.43/0.43 | 0.55/0.86/0.86 | 0.41/0.41/0.25]| 0.66/0.24/0.25| 0.59/0.47/0.44
Navy 0.36/0.40/0.45] 0.50/0.58/0.52 | 0.43/0.43/0.48 0.42/0.46/0.47
Air Force 0.41/0.43/0.39 | 0.26/0.31/0.31 | 0.55/0.95/0.95 | 0.40/0.40/0.25 0.40/0.48/0.44
Army 0.28/0.23/0.24 | 0.36/0.46/0.46 0.45/0.45/0.20 | 0.64/0.19/0.20 | 0.52/0.45/0.40
DoD 0.32/0.32/0.32 0.32/0.32/0.32
TY$|AlI 0.72/0.77/0.78 | 0.50/0.52/0.47 | 0.60/0.44/0.46 | 0.59/0.99/0.99 | 0.43/0.43/0.31| 0.99/0.28/0.28 | 0.74/0.55/0.53
Navy 0.72/0.77/0.78 | 0.55/0.61/0.55 | 0.79/0.44/0.52 0.66/0.63/0.64
Air Force 0.52/0.44/0.41 ] 0.36/0.38/0.38 | 0.58/1.13/1.13 | 0.41/0.41/0.27 0.49/0.52/0.50
Army 0.28/0.23/0.23 | 0.54/0.43/0.43 0.48/0.48/0.30 | 0.97/0.25/0.26 | 0.74/0.44/0.39
DoD 0.38/0.38/0.38 0.38/0.38/0.38
CV on Cost Growth Factor, RDT&E Estimates at MS C
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 0.42/0.43/0.11 | 0.56/0.56/0.22 | 0.43/0.43/0.16 | 0.89/0.90/0.36 | 0.19/0.19/0.19 | 0.22/0.22/0.22 | 0.63/0.55/0.23
Navy 0.42/0.43/0.11]0.71/0.71/0.29 | 0.25/0.25/0.09 0.19/0.19/0.18 0.52/0.53/0.25
Air Force 0.15/0.15/0.15| 0.21/0.23/0.24 | 0.89/0.90/0.37 | 0.06/0.08/0.08 0.69/0.72/0.27
Army 0.09/0.09/0.09 | 0.56/0.56/0.09 0.12/0.12/0.12 | 0.15/0.15/0.15| 0.37/0.37/0.13
DoD 0.24/0.24/0.24 0.30/0.30/0.24
TY$|AI 0.62/0.63/0.12 | 0.56/0.56/0.24 | 0.54/0.54/0.22 | 1.00/1.01/0.37 | 0.21/0.22/0.22 | 0.24/0.24/0.24 | 0.69/0.63/0.25
Navy 0.62/0.63/0.12]0.72/0.72/0.30 | 0.11/0.11/0.11 0.23/0.23/0.22 0.57/0.57/0.26
Air Force 0.17/0.17/0.18 | 0.30/0.31/0.33 | 1.00/1.00/0.38 | 0.06/0.08/0.08 0.81/0.84/0.30
Army 0.11/0.11/0.11 | 0.70/0.70/0.12 0.14/0.14/0.14 ] 0.18/0.18/0.18 | 0.49/0.49/0.15
DoD 0.27/0.27/0.27 0.31/0.31/0.27
CV on Cost Growth Factor, Procurement Estimates at MS C
Sh|p§/ Aircraft Missiles/ Guns/ Space Electronics Vehicles All
Submarines Torpedoes
BY$|All 0.19/0.20/0.23 | 0.27/0.27/0.20 | 0.19/0.19/0.18 | 0.70/0.74/0.14 | 0.46/0.45/0.48 | 0.16/0.16/0.16 | 0.55/0.35/0.27
Navy 0.19/0.20/0.23 | 0.23/0.23/0.06 | 0.15/0.15/0.18 | 0.13/0.13/N/A | 0.69/0.69/0.82 0.28/0.28/0.30
Air Force 0.26/0.27/0.22 | 0.26/0.26/0.21 | 0.71/0.73/0.07 | 0.32/0.23/0.23 0.49/0.50/0.21
Army 0.41/0.30/0.30 | 0.14/0.14/0.10 0.37/0.37/0.39 | 0.14/0.14/0.14 | 0.27/0.26 / 0.27
DoD 0.35/0.35/0.35 0.35/0.35/0.35
TY$|AlI 0.36/0.37/0.42 | 0.32/0.31/0.20 | 0.24/0.24/0.24 | 0.97/0.99/0.18 | 0.69/0.68/0.73 | 0.17/0.17/0.17 | 0.64/0.53/0.39
Navy 0.36/0.37/0.42 | 0.32/0.32/0.05 | 0.20/0.20/0.21 | 0.16/0.16 / N/A | 0.95/0.95/1.09 0.45/0.46/0.51
Air Force 0.29/0.30/0.24 |1 0.30/0.30/0.25 | 0.95/0.93/0.08 | 0.36/0.29/0.29 0.72/0.73/0.26
Army 0.39/0.25/0.25 | 0.22/0.22/0.22 0.37/0.37/0.39 | 0.13/0.13/0.13 | 0.28/0.27/0.28
DoD 0.39/0.39/0.39 0.39/0.39/0.39

Another approach to assessing CV reasonableness is to do so in the context of the Nunn-McCurdy breach.
For a detailed discussion, including how breach values may appear on a program’s s-curve, see Appendix
A.1.5.
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Table 3-5 shows the CV results for the missile example. If the CV is unavailable, the analyst (or reviewer)
can estimate the CV by calculating the percentage difference between the 80% and the 50% confidence level.
In the case of the missile example, only twice is the estimate for CV different than the actual CV by more
than 0.03.

Another indicator of the quality of the uncertainty assessment is the probability level of the point estimate.
In Table 3-5, the probability level of the point estimate is reported in parentheses. The point estimate
generally falls in the 10% to 30% probability range. When the point estimate probability level is very low
this is often an indication that the CV may also be very low (i.e. insufficient uncertainty). When the point
estimate probability level is very high, this can be an indication that the point estimate may already be
padded with some amount of uncertainty.

Table 3-5 Example Model CV Results

Shaded cells mark estimated CVs that are more than| 0.03 |different than the actual.
80%/

WBS Point Estimate | Mean Std Dev CcVv 50% | 50.00% 80.00%
Missile System TY$ $ 276,893 (10%)| $365,333 | $78,884 | 0.22 0.20 |$353,524 $422,525
EMD TY$ $ 88,102 (11%)| $140,417 | $52,654 | 0.38 0.34 |$130,228 $174,642
Production & Deployment TY$ |$ 188,792 (16%)| $224,916 | $37,027 | 0.17 | 0.15 [$220,985 | $254,080
Missile System $ 246,836 (10%)| $325,183 | $70,260 | 0.22 0.20 |$314,740 $376,245
Engineering and Manufacturing Dg $ 83,539 (12%)] $130,683 | $47,692 | 0.37 0.33 |$121,567 | $162,083
Air Vehicle $ 14,944 (24%)| $28,615 | $21,080 ( 0.74 0.72 $22,954 $39,533
Design & Dewelopment $ 12,000 (26%)| $24,380 | $20,409 | 0.84 | 0.85 | $18,752 $34,725
Prototypes $2,944 (20%)| $4,235| $1,516| 0.36 | 0.36 | $3,975 $5,412
Software $ 31,500 (33%)| $44,497 | $23,620 | 0.53 0.52 $39,641 $60,344
System Engineering $17,500 (9%)| $27,113 $8,293| 0.31 0.30 $25,693 $33,350
Program Management $ 15,000 (14%)| $20,528 $5,395| 0.26 0.26 | $19,672 $24,762
System Test and Evaluation $ 1,766 (8%)| $3,654| $1,683| 0.46 0.48 $3,289 $4,866
Training $ 897 (16%) $2,038 $1,551| 0.76 0.74 $1,618 $2,822
Data $1,196 (17%) $2,714 $2,054| 0.76 0.75 $2,156 $3,775
Peculiar Support Equipment $736 (8%) $1,524 $703 | 0.46 0.47 $1,379 $2,021
Production & Deployment $ 163,297 (16%)| $194,499 | $31,984 ( 0.16 0.15 |$191,119 | $219,721
Air Vehicle $ 104,826 (18%)| $127,291 | $25,142 | 0.20 0.18 |$124,490 $147,286
Airframe $ 21,651 (35%)| $25,477 $7,692 | 0.30 0.30 $24,570 $32,055
Propulsion $ 21,849 (32%)| $24,056 $4,541 | 0.19 0.16 $23,617 $27,360
Guidance $ 27,810 (19%)| $37,322 | $10,274| 0.28 0.28 $35,949 $46,000
Payload $ 17,246 (31%)| $19,607 $4,195| 0.21 0.20 $19,204 $22,954
Air Vehicle IAT&C $ 16,269 (41%)| $20,830 | $11,501| 0.55 0.54 $18,270 $28,199
System Engineering $ 12,000 (40%)| $12,442 | $1,363| 0.11 0.11 | $12,347 $13,682
Program Management $ 10,000 (40%)| $10,369 | $1,136| 0.11 0.11 | $10,289 $11,402
System Test and Evaluation $ 5,000 (33%)] $5,369 $690 | 0.13 0.13 $5,296 $6,000
Training $ 4,193 (8%) $6,587 $1,972 | 0.30 0.29 $6,295 $8,133
Data $ 4,193 (8%) $6,036 $1,475| 0.24 0.22 $5,855 $7,165
Peculiar Support Equipment $ 7,634 (50%)] $7,634| $2,039| 0.27 0.22 $7,635 $9,350
Initial Spares and Repair Parts | $ 15,451 (33%)| $18,771 $6,090 | 0.32 0.30 $17,821 $23,238

Select a benchmark CV using the NCCA S-Curve Tool to assess an estimate’s overall dispersion.
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3.6 ALLOCATE AND TIME PHASE RISK DOLLARS

3.6.1 What are Risk Dollars?

For the purposes of convenience and to serve as a reference terminology for future calculations described in
this handbook, “risk dollars” is defined as the amount of funds needed to bring the point estimate value up to
a selected probability level from the simulation results. The difference between the point estimate and
selected estimate, risk dollars, is illustrated in Figure 3-10.

Point Selected
Estimate Estimate

—/
4= U NCERTAINTY —

Figure 3-10 Defining “Risk Dollars” Based on Point Estimate

To calculate risk dollars, a desired probability level or specific budget must be selected. This value may be
mandated or it may be simply an organizational practice. A common practice is to select the mean. An
advantage of selecting the mean is that it will sum through the WBS without the need for an allocation
process. The disadvantage is that every element will be at a different probability level.

3.6.2 Purpose of Allocating Risk Dollars

The point estimate sums through the WBS elements. However, as illustrated in column 1 of Table 3-6, each
element point estimate result is at a different probability level (the probability is shown in brackets). The
same is true of the mean results (column 2). They sum, but each element is at a different probability.
Column 3 shows the result if the EMD and Production are at the 58% level (same probability as the mean for
EMD) and child elements are adjusted such that they do sum. The following section will explain how to
achieve this allocated result.

A desirable outcome of the allocation process is that all elements are closer to the selected probability. In the
case of our example model, the range of probabilities across all the elements of the allocated results (column
3) is less than the range of probabilities when reporting the mean (column 2).

Column 4 in Table 3-6 is the 30% result from every element in the WBS. Column 5 illustrates that the sum
of the children is quite smaller than the simulation result for the parent rows. The sum of the probability
results does not match the simulation result. For probabilities less than the mean, the sum will be less than
the simulation result. Near the mean, the difference gets smaller (compare the difference between columns 4
and 5 with the difference between 6 and 7). Above the mean, the sum of the children returns a result higher
than the simulation result (see columns 8 and 9).

Risk dollars is the difference between the point estimate and a selected result.
The point estimate and mean sum; Percentile results must be allocated to sum.
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Table 3-6 Model Results that Sum and Do Not Sum

Elements Sum Elements Do Not Sum
Column 1 2 3 4 5 6 7 8 9
BY $2014 Point Estimate Mean AF':g;atLeedvg’?;/" All at 30% CS'f]Li‘l'ErZ; All at 60% Ci‘n“;rgz All at 80% ci?ln;rza

Missile System $246,836 (10%)| $325,183 (56%)| $328,430 (~58%)| | $283,940| $254,462 | $332,166| $331,032| $376,245| $407,615

Engineering and Manufacturing Dy~ $83,539 (12%)| $130,683 (58%) $130,903 (58%)| | $101,840( $92,091| $132,976 $130,521| $162,083 $172,077
Air Vehicle $14,944 (24%)|  $28,615 (64%)|  $27,172 (60%) $16,668 $27,005 $39,533
Design & Development $12,000 (26%)|  $24,380 (64%)|  $22,814 (61%) $12,990 $22,517 $34,725
Prototypes $2,944 (20%) $4,235 (57%) $4,357 (60%) $3,284 $4,352 $5,412
Software $31,500 (33%)|  $44,497 (59%)|  $45,130 (60%) $30,275 $45,072 $60,344
System Engineering $17,500 (9%)|  $27,113 (56%)|  $27,908 (60%) $21,911 $27,907 $33,350
Program Management $15,000 (14%)|  $20,528 (57%)|  $20,963 (60%) $17,201 $20,978 $24,762
System Test and Evaluation $1,766 (8%) $3,654 (59%) $3,699 (60%) $2,612 $3,704 $4,866
Training $897 (16%) $2,038 (64%) $1,917 (61%) $1,168 $1,900 $2,822
Data $1,196 (17%) $2,714 (64%) $2,565 (60%) $1,559 $2,545 $3,775
Peculiar Support Equipment $736 (8%) $1,524 (59%) $1,550 (60%), $1,091 $1,546 $2,021

Production & Deployment $163,297 (16%)| $194,499 (54%)| $197,527 (58%)|| $175,603| $162,371| $199,220 $200,511| $219,721 $235,538
Air Vehicle $104,826 (18%)| $127,291 (54%)| $129,286 (57%)|| $112,408 $131,213 $147,286
Airframe $21,651 (35%)|  $25,477 (54%)|  $26,204 (58%) $20,683 $26,610 $32,055
Propulsion $21,849 (32%)|  $24,056 (54%)|  $24,460 (58%) $21,596 $24,674 $27,360
Guidance $27,810 (19%)|  $37,322 (54%)|  $38,350 (58%) $30,487 $38,936 $46,000
Payload $17,246 (31%)|  $19,607 (54%)|  $20,045 (58%) $17,187 $20,237 $22,954
Air Vehicle IAT&C $16,269 (41%)|  $20,830 (60%)|  $20,228 (58%) $13,940 $20,751 $28,199
System Engineering $12,000 (40%) $12,442 (53%) $12,629 (57%) $11,645 $12,730 $13,682
Program Management $10,000 (40%)|  $10,369 (53%)|  $10,524 (57%) $9,704 $10,609 $11,402
System Test and Evaluation $5,000 (33%) $5,369 (54%) $5,445 (57%) $4,943 $5,498 $6,000
Training $4,193 (8%) $6,587 (56%) $6,672 (57%) $5,359 $6,800 $8,133
Data $4,193 (8%) $6,036 (55%) $6,104 (57%) $5,155 $6,215 $7,165
Peculiar Support Equipment $7,634 (50%) $7,634 (50%) $8,014 (57%) $6,565 $8,151 $9,350
Initial Spares and Repair Parts| ~ $15,451 (33%)|  $18,771 (57%)| $18,854 (57%) $15,107 $19,300 $23,238

3.6.3 How to Allocate Risk Dollars

The first step in the risk allocation process is to determine at what level in the WBS the risk dollars are to be
managed. That is, to select the highest WBS elements to the assigned budget is not allowed to change. In
this example model the appropriation level is selected. Others may choose to set the budgets at a lower or
perhaps higher level.

By choosing to manage the risk dollars at the appropriation level, it means the simulation statistical results at
this level will be the basis for calculating risk dollars and starting point to perform risk allocation should
budgets need to be set at lower levels. Allocation is not necessary when the mean is the selected estimate.

Once the WBS levels from which cost risk will be managed are determined, select the desired probability
level of the simulation results. The difference between the point estimate and the simulation result at the
selected probability level are the risk dollars to be allocated to lower-level elements. Put another way, the
child elements need to sum to the selected probability level. While manual, ad hoc changes to child elements
can achieve this purpose, it is preferred to follow a defendable and repeatable allocation scheme that
allocates risk dollars to lower-level elements in a consistent manner. Methods vary from simple business
rules to elaborate mathematical allocation schemes. The “Needs” (Reference 49) allocation approach is one
such method and it is summarized in Appendix A.12.2. Whichever risk allocation method is chosen, it
should be consistent with the agency’s objectives for the process. The following objectives were selected
for the example model presented in this handbook.

e This example allocates risk dollars from the appropriation level. This means the results for the EMD
and Production total will be the simulation result for the selected probability level. Allocating from
the total overall would imply that EMD and Production funds can be exchanged. The goal is to
allocate from the level where risk dollars are managed. In this case, that is at the appropriation totals.
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The lower-level EMD and Production results at the selected probability level will not sum. Only the
mean will sum. If a probability level is selected, the lower-level elements need to be adjusted to
cause them to sum.

Some methods allocate risk dollars to the point estimate at lower levels. This method will adjust the
lower-level probability results directly. For example, if the result is requested at the 85% probability
level, begin with the simulation results for all elements at that probability level.

The allocation method should be influenced by the uncertainty and correlation of lower WBS levels.

Some methods are designed to not allow any WBS element result to be less than the point estimate.
This method adopts a different premise. It will treat all elements the same, meaning all elements will
gravitate towards the selected probability level, even if it is lower than the point estimate. This
significantly simplifies the algorithm.

A simple allocation scheme that is consistent with these objectives is to make the adjustment directly to the
simulation probability results (not the point estimate). This process follows steps illustrated in Figure 3-11:

Select the level in the WBS from which risk dollars will be allocated (EMD and Production).
Generate the simulation results in BY dollars for all levels in the WBS.
Sum the immediate subordinate probability results (2).

Compute the difference between the sum of the children and the parent value (3). This difference
represents the dollars to be “allocated” to the subordinates to cause them to sum.

Using the standard deviation (4), prorate (6) the amount to allocate (3) to compute the adjustment for
each child (6).

Apply the adjustment (6) to the element percentile result (1) to develop the allocated result (7).
Complete the allocated results by summing to the parent levels.

Levels above the WBS chosen as fixed are merely the sum of their children. In this case the total
Missile System will now be the sum of the EMD and Production statistical result, meaning it will no
longer match its statistical result. And it should not be expected to match since the EMD and
Production dollars have been fixed to their statistical results.
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[ Column 1 2 3 4 5 6 7 8 9
. ) .| Amount To Child Allocated : Risk
80% Allocated from EMD and Production P‘;[::u"lge Sse";c"efn‘;:‘e": Allocate | std Dev Sui‘(dsel;/ev) Adjustment | Result ESF;i‘:'n”a‘te Dollars
BY 2014 $K 1-2) 8*5) (1+6) (1-8)
Missile System MissileSys $381,908 $246,836| $135,071]
Engineering and Manufacturing DeyEMD $163,168 $170,462 -$7,294] $163,168| $83,539] $79,629
Air Vehicle AV_EMD $39,012 $39,507 -$2,831 20,400 0.3202] -$2,335.94 $36,676 $14,944| $21,732
Design & Development DesignDev_EMD $34,083 19,708 0.9288 -$2,629.13 $31,454 $12,000] $19,454]
Prototypes Proto_EMD $5,424 1,510 0.0712 -$201.43 $5,222 $2,944|  $2,278]
Software SW_EMD $60,064 23,706 0.3721 -$2,714.49 $57,349 $31,500] $25,849
System Engineering SysEng_EMD $33,317| 8,332, 0.1308| -$954.08 $32,363 $17,500] $14,863]
Program Management PM_EMD $24,677 5,433 0.0853 -$622.16| $24,055 $15,000{  $9,055
System Test and Evaluation STE_EMD $4,852 1,686 0.0265 -$193.03 $4,659 $1,767|  $2,892
Training Trg_EMD $2,794 1,472 0.0231 -$168.57 $2,626 $897|  $1,729
Data Data_ EMD $3,723 1,978 0.0310 -$226.46 $3,496 $1,196 $2,301
Peculiar Support Equipment PSE_EMD $2,023 695 0.0109 -$79.62 $1,944 $736|  $1,207]
Production & Deployment Production $218,740]  $225,199 -$6,460 $218,740 $163,297| $55,442)
Air Vehicle ProdAV $146,105 $155,931 -$13,887| 24,904 0.6286] -$4,060.57| $142,044 $104,826| $37,219
Airframe Airframe $31,853 7,598 0.2004 -$2,783.41 $29,070) $21,651|  $7,419
Propulsion Propulsion $27,414 4,549 0.1200) -$1,666.24 $25,747| $21,849|  $3,898
Guidance Guidance $45,416 10,046 0.2650 -$3,680.17 $41,736] $27,810| $13,925
Payload Payload $23,037 4,272 0.1127, -$1,564.83 $21,472] $17,246| $4,226
Air Vehicle IAT&C IAT&C $28,211 11,445 0.3019 -$4,192.45 $24,019) $16,269|  $7,750)
System Engineering SysEng $13,682 1,363 0.0344 -$222.24 $13,459 $12,000{  $1,459
Program Management PM $11,401 1,136 0.0287| -$185.20 $11,216 $10,000 $1,216
System Test and Evaluation STE $6,000 689 0.0174 -$112.41 $5,887 $5,000 $887
Training Trg $8,160 1,990 0.0502 -$324.41 $7,835 $4,193|  $3,642
Data Data $7,176 1,466 0.0370 -$239.06 $6,937 $4,193|  $2,744
Peculiar Support Equipment PSE $9,351] 2,041 0.0515 -$332.78 $9,018] $7,634|  $1,384]
Initial Spares and Repair Parts InitalSpares $23,325 6,030 0.1522 -$983.24 $22,342 $15,451)  $6,891

Figure 3-11 A Risk Dollar Allocation Process

3.6.4 How to Time Phase Allocated Risk Dollars

Once the risk dollars have been calculated and allocated, the next step is to determine how the risk dollars
should be time-phased. A common approach is to layer the risk dollars on top of the phased point estimate
results (see Reference 86). Having calculated risk dollars for each WBS element and chosen that they
should be phased over the point estimate schedule, there are several approaches to phase the risk dollars.

Backload: If the near-term budget is set or there is little chance of consuming risk dollars early in the
project, it is advisable to backload risk dollars into the later years of the phase.

Frontload: When it is apparent that the greatest uncertainty is early in the project, it is advisable to
frontload the risk dollars.

Specific time: The analyst may consider time-phasing the risk dollars after a specific “risky” event.
An example might be after the critical design review or the first flight test of a missile system. If a
program is underway and the budget in the near-term years is inflexible, then the analyst can append
the dollars to years beyond the current time-phased point estimate. This is particularly well-suited for
situations where the uncertainty issues, when manifest, will require additional schedule (i.e. longer
program duration) to address.

Algorithm at Lowest Levels: The analyst may consider developing phasing methods at the lowest
level that are influenced by the probability level requested. Specifically, the method can cause the
schedule to contract or expand with the probability level requested.

Prorate: The analyst needs to make an effort to identify when the uncertainty will occur and choose
one of the previous methods. When there is no evidence to do otherwise, prorating risk dollars across
the point estimate phased result is recommended. Proration is a common approach for the Production
estimate.

62



Joint Cost Schedule Risk and Uncertainty Handbook

Table 3-7 illustrates the results with the risk dollars phased and prorated over the point estimate schedule.
Table 3-7 Risk Dollars Phased over the Point Estimate Schedule

80% BY 2014 $K Allocated from Second ]
Level Risk Dollars Phased Across the o 2014 2015 2016 2017 2018 2019 2020 2021 2022
Point Estimate Schedule
Missile System $381,908]  $26,310] $31,589] $32,793 $35,608] $31,589] $54,007| $58,904] $56,274] $54,833
Engineering and Manufacturing Development $163,168 $26,310| $31,589| $32,793| $35,608 $31,589| $5,279
Production & Deployment $218,740) $48,728| $58,904| $56,274| $54,833
BY to TY Factors RDTEN 1.01414( 1.03225| 1.05069| 1.06954| 1.08875 1.10830| 1.12821] 1.14847| 1.16910
BY to TY Factors WPN 1.02922 1.04775( 1.06661] 1.08581| 1.10535| 1.12525| 1.14550| 1.16612( 1.18711
80% TY $K Allocated from Second Level
Risk Dollars Phased Across the i 2014 2015 2016 2017 2018 2019 2020 2021 2022
Point Estimate Schedule Y
Missile System $421,268 $26,682| $32,608| $34,455| $38,084| $34,393| $59,857| $66,456| $64,629| $64,106
Engineering and Manufacturing Development $172,072 $26,682| $32,608| $34,455| $38,084| $34,393| $5,851
Production & Deployment $253,022 $54,831| $67,475| $65,622| $65,093

3.6.5 Additional Considerations Regarding Time Phasing Allocated Risk Dollars

In the presence of an uncertain schedule, a number of additional items may be considered in the process of
time phasing allocated risk dollars. There are options to consider regarding how the simulation should
behave regarding phase linkage. This example model includes two phases, EMD and Production giving rise
to the decision whether Production start should be influenced by EMD end. Having decided how the
simulation’s phase linkage should behave, the next decision is chosing the schedule over which the risk
dollars shall be phased in order to develop a budget estimate. While there are many possible combinations,
three are described here and summarized in Table 3-8:

1. EMD Duration Uncertainty, Prorate over PEg only

O Simulation: RDTE and Production schedules are disconnected in the simulation model. RDTE
slips do not influence start of Production in the simulation. No attempt to influence Production
rate or duration through risk or uncertainty.

O Budget Estimate: RDTE risk dollars are spread across the RDTE PEs. Production dollars are
spread across Production PEg.

2. EMD Duration Uncertainty, Influence Prod Start, Prod Duration Uncertainty.

O Simulation: RDTE and Production schedules are connected in the simulation model. RDTE
slips do influence start of Production in the simulation. Production duration and production rates
are influenced by risk and uncertainty.

O Budget Estimate: RDTE risk dollars are spread across the RDTE mean schedule. Production
starts in the same year EMD ends. Production risk dollars are spread across its mean schedule.

3. Full Cost/Schedule Integration: This is the same as the second option, except care is taken to
separate time dependent and time independent costs. This is only possible in a full FICSM model.

Table 3-8 Summary of Some Simulation and Risk Dollar Phasing Options

Simulation Phasing of Risk Dollars
Influenced by Phase duration| Prorated over ? Schedule
EMD Link Prod Type of
ApproaCh EMD to Prod Prod EMD Start Prod Model
1 |EMD Duration Uncertainty, Prorate over PEs only Yes No No PEs PEs PEs CISM
2 [EMD Dur Uncertainty, Influence Prod Start, Prod Dur uncertainty Yes Yes Yes Mean |End EMD| Mean CISM
3 |Fully Integrated Cost Schedule Method Yes Yes Yes Integrated result FICSM
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For this handbook, approach 1 is suggested as the preferred way to fully simulate the program, particularly
for early programs where the EMD start is far in the future. The example CISM model models EMD start
and EMD duration uncertainty . It has a fixed start and finish date for production, and production start is not
linked to EMD end. However, the model was designed with a switch to allow Production start to be linked
with EMD end so that when the simulation draws long EMD durations, Production starts later. It would also
be simple enough to design the model such that annual buy quantities have an uncertain production rate and
thus introduce duration uncertainty into production phase. While CISM models based on approach 1 may be
appropriate for developing budget estimates, approach 2 or variations on it should be explored (and as
appropriate presented to decision makers) to gain a sense of how duration uncertainty may affect both the
total cost and the overall schedule. Depending on the history, situation, and practical realities for the project,
a defendable case can likely be made for variations on any of these approaches.

4.0 HOW TO PRESENT THE CISM RISK AND UNCERTAINTY STORY

4.1 REPORTING TO TECHNICAL REVIEW

4.1.1 Overview

Technical reviews are a process of subjecting an estimate to the scrutiny of others. Technical reviews are
used to communicate status, identify estimate weaknesses, suggest alternative approaches, and coordinate
activities within multi-disciplinary or interagency estimating teams. Reviews may also allow peers from
outside the project to bring objectivity and a fresh viewpoint to the estimate. The detailed story told by the
charts described in this section enables consensus-building within the estimating team which then forms the
basis for the simple, yet complete overview subsequently prepared for decision makers. Reporting to
colleagues or technical management allows the analyst to choose from a wide variety of the analyst’s
favorite and most technically compelling charts and tables. The evolving needs of each organization and
each project will dictate specific chart requirements. But even so, the presentation of each phase’s estimate
should, at a minimum, include:

¢ Distributions used in the estimate and their parameters (e.g., Table 2-10).

e S-curve showing multiple curves to convey impact of key uncertainty elements (e.g., Figure 4-1).

e Scatter plot of cost vs. schedule to convey dispersion breadth (e.g., Figure 4-2).

e Pareto chart to convey the most expensive lowest-level WBS elements (e.g., Figure 4-3).

e Tornado chart to convey the uncertain variables that most influence the phase total (e.g., Figure 4-5).

e Sensitivity chart to convey the elements that contribute the most to phase uncertainty (e.g., Figure
4-6).

e Charts intended for the subsequent decision maker review(s) (e.g., Figure 4-8 and Figure 4-9).

4.1.2 S-Curve and Scatter Plots

The s-curve plot shown in Figure 4-1 (a repeat of Figure 3-9) provides an overview of the impact of broad
categories of uncertainty elements. This can form the starting point for discussing the structure of the model
and its behavior. Specifically, charts that follow should defend the modeling techniques, CERs, duration
impacts, uncertainty and correlation choices.

64



Joint Cost Schedule Risk and Uncertainty Handbook

Missile System
Calculated with 10000 iterations

CV (1. CISM Program Estimate) = 0.216

1.0
0.9
08

&

8 0.7

50.6

E=]

[}

=]

205

o

@

204

(1]

El = 1. CISM Program Estimate

Eo3

(%] —8—2 Mo Sched Uncert
02 = 3. No Sched or RR Uncert
04 — 4. No Sched, RR or Correlation

' ===5_No Sched, RR, CER Uncert, or Corr

00

$200.000 $250,000 $300.000 $350.000 $400.000 $450,000 $500.000 $550,000 $600.,000

TY $K

Figure 4-1 Compare Impact of Key Risk and Uncertainty Elements

Another useful chart for overview discussion is the scatter plot. Figure 4-2 illustrates two scatter plots
where each draw’s EMD cost is plotted against EMD end date (on the left panel) and also EMD duration (on
the right panel) in months. The CV for date is remarkably low because a date is based upon a number like
43,909 (19 March 2020, the mean date). Even a tiny CV of 0.011 represents a standard deviation of 483
days. The right image is the same chart with EMD duration expressed in months with a CV of 0.207 which
represents a standard deviation of almost fifteen months.

450,000

400,000 -

350,000

250,000

200,000

EMD TY (CV=0.378)

150,000 -
100,000 -

50,000 4

0 T T T
10 May 16 22 Sep 17 04Feb19 18 Jun20 310Oct21 15Mar23 27 Jul24 09 Dec 25

EMD vs EMD End Date

Correlation: Pearson = 0.655, Rank = 0.652

300,000

EMD End Date (CV=0.011)

EMD vs EMD Duration (Mths)

450,000

Correlation: Pearson — U614, Hank — 0.6/8

0.

250,000

200000 +—————

EMD TY (CV=0.378)

150,000 +————

100,000

50,000 +——

400,000 o o

L T T T
36.00 48.00 80.00 Tz00 8400  96.00
EMD Months (CV=0.207)

132.00

Figure 4-2 Scatter Plot Examples
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4.1.3 Driver Analysis Overview

There are several reporting tools available to help identify cost and schedule drivers. There are various
options for running these tools and the most fundamental is which estimate should be the subject of the
analysis. Too often driver analysis is performed on the point estimate in constant year dollars because that is
what most tools will do by default. The analyst is encouraged to investigate both BY and TY driver analysis.

The following tools will be discussed:
e Parteto: identifies those WBS elements that contribute the most to the target WBS total
e Tornado: identifies the uncertain variables that most influence the target WBS total

e Sensitivity: identifies the elements that contribute the most to the target row uncertainty. There is
an additional distinction to be made. Finding the child WBS elements (contributors) that contribute
the most to the total uncertainty and finding the estimating method inputs (drivers) that contribute
most to the total uncertainty.

4.1.4 Pareto Chart

The Pareto chart identifies the most expensive lowest level elements in the estimate WBS. A Pareto based
upon the point estimate in BY dollars and the mean estimate in TY dollars is illustrated in Figure 4-3. As
can be seen in this figure, the chart will yield a different message depending on the estimate under scrutiny.
The TY Pareto captures the impact of inflation based on how the estimate is phased. The analyst is
encouraged to consider both results to assess the impact of how the dollars are phased influences the results.

Program (Point Estimate) Missile Program (Mean)
Engineering and Manufacturing Development Engineering and Manufacturing Development
oo sonvere [
Systam Fnginearing _ System Engineering _
Program Management _ Design & Development _
Design & Development _ Program Management _
Prototypes - Prolulypes -
System Test and Evaluation . System Tes! and Evaluation -
pata ] oata [
Training I Training .
Peculiar Support Equipment I Meculier Support Equipment I
50 57,000 $14,000 21,000  $28,000 $35,000 50 510000 S20,000 530,000 £40,000 SR0,000
BY2014 5K TY $K

Figure 4-3 Pareto Charts of the BY Point Estimate and TY Mean

Figure 4-4 is a variation on the Pareto chart. The concept was obtained from the 2010 Army Cost Analysis
Handbook (Reference 63). The chart provides insight on how the probability selected for the estimate will
influence the importance associated with subordinate WBS elements. For instance, if only point estimate or
50% results are considered, EMD Design and Development falls from third to tenth. The WBS elements in
Figure 4-4 are sorted on the 90% probability result. By doing so, the impact of low probability risk register
items is captured. This is why EMD Design is ranked third in this chart. Also note that the rank order below
EMD Design changes when the estimate is considered in TY$. For instance, EMD System Engineering falls
from fourth in the BY chart to sixth in the TY chart. For this reason, it is recommended that these charts be
considered in TYS. It is further recommended that basing this chart on TY allocated results should be
considered if something other than prorate is used to phase the risk dollars.
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Figure 4-4 Stacked Pareto Charts Based on BY and TY Simulation Statistical Results

4.1.5 Tornado Chart

Tornado charts rank the uncertainty distributions that have the most influence on a specific element’s point
estimate result. The Tornado chart illustrates the swing between the maximum and minimum forecast values
for each variable. Input distributions that have the largest impact on the distribution of the selected output
will generate the longest bars in the graph. The variable that causes the largest swing is displayed at the top
and the variable that causes the smallest swing is displayed at the bottom. This chart helps identify the
distributions that have the most impact on the total. However, the analysis is performed one element at a
time. For instance, when payload weight is tested, other weights (like airframe or propulsion) are not
changed to be consistent. For this reason, the Tornado chart alone is insufficient to find uncertainty drivers.

Crystal Ball begins by finding all the distributions defined in the model. @Risk and ACE begin with just
those distributions that are functionally related to the element under analysis (target). Crystal Ball and
@Risk begin the Tornado analysis process by determining the 10 and 90 percentile of each distribution to be
evaluated. ACE takes it a step further by obtaining the 10 and 90 percentile of each element that is
functionally related to the target from the simulation. This means the combined applied and inherited
uncertainty is considered when defining the 10 and 90 percentile bounds for the analysis. So in Crystal Ball
and @Risk, the most important distributions are found. In ACE, the most important variables are found.

The Tornado analysis generates two point estimates for each driver it finds, one using the variable at the low
end and another at the high end of the specified range (by default, the 10 and 90 percentile). All other
variables are held constant. The idea is to find the single variable that has the most influence on the total.
Figure 4-5 illustrates the Tornado chart developed in BY and TY dollars. In this model, the rank order does
not change. But that is not always the case. Since budgets are reported in TYS, it is recommended that
Tornado analysis be performed on TY results using the 10/90 uncertainty range.
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Figure 4-5 Compare Tornado Performed on PE BY and PE TY

4.1.6 Sensitivity Chart

The objective of a Sensitivity Analysis is to find the most important contributors to the target element
uncertainty. Use these charts to determine which elements in the model warrant detailed discussion. This
may or may not report the same elements as the Tornado. There are two types of uncertainty elements
decision makers may be interested in:

e Cost Contributor Uncertainty: Find WBS elements that contribute the most to total uncertainty.
There is a closed form solution to calculate the contribution of each WBS element uncertainty to the
total. It is based on the fact that the sum of the variances, adjusted for the Pearson Product Moment
correlation between them, will sum to the simulation total variance in a WBS. Consequently, it is
possible to calculate the correlation adjusted (combined functional plus applied) contribution by
element and thus directly calculate each WBS element’s contribution to the total. ACEIT provides
this chart, the other tools do not, but it is simple to create.

e Cost Driver Uncertainty: Find input variables that contribute the most to total uncertainty. Every
tool provides this feature and they all approach the problem differently. That means there will be no
way to obtain consistent results across tools without specifying a specific process. Crystal Ball,
@Risk and ACE all have the ability to perform the analysis by measuring the correlation between
defined distributions and the target total. (@Risk version 6 introduced a new method that is their
default and ACE also provides an optional alternative approach.

This discussion will focus on the Cost Driver Uncertainty. For consistency across tools, it is recommended
that the rank correlation view is selected. Cost driver distributions that correlate most with the target are
deemed to be the most important. But take care to look for distributions that have nothing to do with the
target apprearing on the chart if they happen to be highly correlated with distributions that are important.
Crystal Ball and @Risk will alert the user when correlated distributions are displayed on the report rendering
the results potentially misleading (see footnote on the left chart in Figure 4-6). A workaround is to run the
analysis with applied correlation disabled to see if the results change.
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Figure 4-6 CB Sensitivity Result with Correlation Enabled and Disabled

Indeed the results are quite different when applied correlation is disabled. For instance, the correlation of
Airframe UCI1 to the EMD uncertainty changes from 0.39 to less than 0.03 since it does not appear on the
correlation disabled chart. Also, note that the scale on the top axis changes, a consideration when comparing
charts like this.

ACE provides an option to engage a method (see Reference 36) that will account for applied correlation.
Figure 4-7 illustrates that impact on the Sensitivity analysis.
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Figure 4-7 ACE Sensitivity with Correlation Ignored and Correlation Accounted for

@Risk 6.0 introduces another method for finding those distributions that have the most impact on a
particular element. The process is summarized as follows:

e Collect the trial data for the target element and all of the related distributions defined in the model
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0 Distributions associated with cells that do not link (via the model’s formulas) to the target cell are
removed from the Sensitivity analysis to avoid spurious results (this feature can be disabled if
necessary)

e Sort the trial data by the first variable and divide into bins
e Calculate the statistic of interest (such as the mean or a percentile) for each of the bins

e The highest and lowest value calculated for any bin is stored and compared to the results of the same
process for every other distribution considered in the analysis

The user is permitted to change the number of bins used to perform the analysis. Doing so will change the
results considerably and, the smaller the trial-to-bin ratio, the more unstable the results. If this method is to
be used, agencies are highly encouraged to promote use of a consistent number of trials and bins, for instance
10,000 trials and 10 bins. However, 1,000 trials per bin may still yield unstable results. Consulting a
convergence test result (Section 3.4.3) may help with determining the number of trials per bin that are
required for stable results.

4.2 REPORTING TO DECISION MAKERS

Reporting to senior leadership does not typically require the type of detailed charts shown to colleagues or
technical management. Presenting the risk story to senior leadership or to a review agency requires
presentation of the s-curve as shown in Figure 4-8. In the upper left is the s-curve with markers for
individual points of interest such as the mean, the 80% or a particular scenario. Agencies may choose other
estimates to include on the s-curve such as budgets, CAPE estimates, and high and low scenarios. To the
right of that is a decile table showing each 10% increment of probability and its corresponding value.
Markers may be optionally used to show other estimates on the decile chart. Directly below the s-curve is
the CV to convey the estimate’s dispersion. At the bottom right is a list of the major drivers of risk in the
model. Optionally, parameters for the low and high scenario may be shown. This is to give context to the
overall curve in words and parameters that the decision maker can understand. This chart must be repeated
for each appropriation on which uncertainty analysis was performed. For an on-going program this s-curve
is the to-go cost, but the sunk cost needs to be included on the chart. Optionally, a second s-curve containing
both sunk and to-go cost may be presented in which case both sunk cost and to-go costs must be clearly
noted.

Strive for a consistent x-axis range throughout a given presentation and even throughout each organization.
It is suggested that the x-axis be centered on the mean with a range consistent with a CV of 0.3.
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CSRUH Example Missile EMD Gost Range Probability ™ KS
EMDTY : CV=0.37
100% . 90% $207,255
L 2
90% | P ¢ 80% $172,072
o 70% $155,334
80% - 80% Value, o
stz e 60% $140,795
h R 50% $128,975
Mean, @
| 0% | $139.028 s | 40% $118,768
=
Q. | 50% Value, | 0
50% S 2&37'-'58 .l 30% $108,375
J 20% $97,122
40% A :
h 10% $84 554
20% | .
Y
&
20% N
’0’ Cost Uncertainty Drivers
10% 1 ¢ - *  SWMonths
o' * Design Cost/Mth
0% - - : ; -
$10,000 $60,000 $110,000 $160,000 $210,000 $260,000 * SWlabor Rate
TY $K « EMD Duration
X axis centered on Mean with a range consistentwith a CV of 0.3

Figure 4-8 Sample S-curve Presentation Chart

The second necessary chart is the phased estimate by appropriation. This will show the TY estimate at the
selected cumulative probability by year. An example is shown in Figure 4-9.

80% TY $K Allocated From Risk Dollars are Phased Across the Point Estimate Schedule
EMD and Production. Total 2014 2015 2016 2017 2018 2018 2020 2021 2022
Missile System $421,268) $26.682| $32.508| $34,455| $38.084] $34,3¢3| $50.857| $66.456| $64.629| $64.106
Engineering and Manufacturing Development 5172,072]  s26,662] 532508] 534,455 $38,084] 534,203 85851
Production & Deployment $253,022) | | s54.831] se7.475] s65.622 365,009

Figure 4-9 Sample Phased Estimate by Appropriation Presentation Chart

Note that the allocated total for EMD is slightly different than the S-Curve value at 80%. The reason for this
is that the s-curve is developed directly from the simulation which includes influence from duration
uncertainty. The risk allocation approach is performed on constant year dollars, phased and then inflated to
the TY. As shown in Figure 4-10, the 80% TY results from the simulation and allocation differ by about
1.6% for EMD. Production is almost identical because we did not include duration uncertainty in
Production. The BY results match each other identically, except for the total. The total should not match
since the simulation is the statistical result, not the sum of EMD and Production, while the allocated result is
the sum.

80% BY Results TY Results
9 9 Simulation | Allocation |Simulation| Allocation
Simulation and Allocated Results Result Result Result Result
Missile System $376,127 $381,908] $421,719| $421,268
Engineering and Manufacturing Development $163,168| $163,168| $174,934| $172,072
Production & Deployment $218,740|  $218,740| $253,240( $253,022

Figure 4-10 Comparing Simulation and Allocated TY Results
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In addition to the s-curve and phased charts, a complete presentation of the risk analysis must contain the
following items:

e The contents of the point estimate.

e General approach of how the uncertainty was defined and, in the case of the simulation method, how
the bounds and distributions were chosen.

e Identify the most important contributors to the cost estimate uncertainty and any risk mitigation
initiatives captured by the estimate.

e Identify the cost drivers that have the most impact on the cost estimate.

e The key point is to list those topics that have meaning to the decision maker.

Technical Review charts:

Use multiple methods (Pareto, Tornado, Sensitivity, etc.) to identify cost, duration and uncertainty drivers.
These reports are powerful for exploring the model within the estimating team, but should only be in backup
to support a brief description of the drivers to decision makers.

S-curves should report CV, point estimate and mean. X-axis range should be fixed when comparing two or
more s-curves.

This is not an all-encompassing list of useful charts.

Two essential charts for presenting the risk story to leadership:
S-curve summary for each program phase.
Time-phased TY estimate by appropriation.
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5.0 ALTERNATIVES TO THE CISM APPROACH

5.1 OVERVIEW

Although this handbook focuses on how to build a detailed model there are acceptable alternatives including
outputs-based, scenario-based or method of moments. Considerations that would lead an analyst to choose
one of these approaches over CISM include: available data, available resources, available schedule, the
complexity of the estimate, and the consequences of “less precise results.” These methods are meant to
complement rather than replace CISM. Each method has its strengths and weakness. A best practice is to
employ more than one technique and to compare results. If the aggregate results of the alternative
procedures are far apart, further work is required to determine why.

This handbook recommends CISM for conducting cost risk and uncertainty analysis and, if time and
resources permit, a FICSM model. A sound rationale is required if something other than CISM is chosen as
the primary method.

5.2 ENHANCED SCENARIO-BASED METHOD

5.2.1 Overview

SBM was published in Reference 41 and 60 and eSBM, an enhanced version of SBM, was published in
Reference 76. Rather than building up risk and uncertainty element by element as in Monte Carlo
simulation, eSBM instead shifts attention to the identification and quantification of what can go right and
what can go wrong with an acquisition program from a high-level management point of view. CISM and
eSBM both yield S-curves. Yet, the two techniques are fundamentally different in approach, CISM applies
risk and uncertainty at low levels in the program WBS and eSBM is more of a top-down approach.

5.2.2 Approach & Assumptions
The eSBM, as a practical application and in simplified form, is executed in these steps:
o Identify the major cost-driver variables or potential events that influence the total cost of interest.

e The objective of an eSBM is to assess the impact of various scenarios against a program baseline.
Consequently, the baseline scenario is often based on the Cost Analysis Requirements Description
(CARD) parameters.

e Group these variables or potential events into scenarios. Each scenario is a well-defined set of
technical and programmatic conditions that collectively affect the identified variables or provoke
specific events to cause an impact on the planned cost. The non-baseline scenarios do not represent
extreme best or worst cases but rather reflect a set of conditions that might very well occur.

e Select an appropriate historically-based coefficient of variation for use in generating a probability
distribution (for example Table 3-4).

e Estimate the point estimate (x,,) probability («,, ) to determine where it lies on the S-curve.

5.2.3 Estimating the eSBM Lognormal Distribution

Begin with the assumption that the probability distribution of program cost (COSQng ) is a lognormal

distribution, from which one can estimate its parameters from the approach and assumptions in the previous
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section. There are two steps involved in computing the mean and standard deviation of COSthm The first

step is to compute the mean and standard deviation in log space: In( COSthW)‘

Equation 5-1 Calculating the Log Space Mean and Standard Deviation from the PE and CV

Hi, Cost py =In Xpg — Zpp hl(l +CV 2)
Gln Cost pgy = ln(l +CV 2)

where xpp is the program’s point estimate cost, zpg is the value such that P(Z<zpr)=apr and Z is the
standard normal random variable; that is, Z ~ N(0,1) . Note that the probability level of the point estimate x pg
is denoted by « ,,, -

The next step is to translate In( COSPgm) into the unit space mean and standard deviation. Details on these
formulas can be found in Appendix A.6.4. The result can be used to fully define a lognormal distribution.
As an alternative to calculating the mean and standard deviation for use in a spreadsheet or simulation tool,

the NCCA S-Curve tool (available for download from www.ncca.navy.mil/tools/tools.cfm) can be used. The
S-Curve Tool allows practitioners to:

e Enter data to create up to two S-curves
e Use historical CVs and cost growth factors (CGFs) to generate S-curves

e Plot alternative point estimates on an S-curve

Details of the S-Curve features and a user guide are available on the NCCA web site. Figure 5-1 outlines
the S-Curve tool process flow. For the example model, one could select parametric, lognormal, specify the
PE cost is in TY, the PE probability, and the CV. The tool will generate the s-curve and plot additional
points on it plus compare the example model s-curve to historical s-curves for the commodity of interest.
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(5) Quantity

Figure 5-1 NCCA’s S-Curve Tool Process Flow

5.2.4 eSBM Example Application

The missile example model WBS and point estimate are the basis of the eSBM example. eSBM begins with
a vigorous discussion among stakeholders to identify and analyze various scenarios. For example, expert
stakeholders may determine that the research that led to Figure 5-2 makes it a reasonable reference from
which a low and high bound for software person months could be estimated. However, eSBM typically
continues with an in-depth investigation into the nature and underlying causes of potential code growth.

Results of the investigation can serve as a risk mitigation strategy for the program office.

Size of Software Development Effort = f(Code Count)

ESLOC Growth

Development Months

Frequency —
20 -

10 -

0
<050 075 10 125 150 175 220
Actual Count/ Initial Count

0 20,000

40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
ESLOC Count

Figure 5-2 ¢eSBM Example Software Development Uncertainty
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Ideally, the expert stakeholders will identify data-driven methods to develop ranges on the key cost drivers
they have identified in the model. This is one of the great benefits of the eSBM method, developing a deep
understanding of the program’s uncertainties through a detailed and systematic assessment of the program
elements. The result of such discussions should lead to a summary of values that can be used to create
different scenarios as illustrated in Figure 5-3.

Cost Driver Optimistic Esi?r:wnefte Pessimistic
EMD Duration (Months) 54 60 72

EMD RR1 Dururation Increase (Months) 24

EMD Software Effort (Person Months) 1,130 2,100 3,150
EMD RR1 Increase SW Effort (Person Months) 800
Prod RR#2 Incr to Guidance First Unit Cost 50

Prod Airframe Weight (Ibs) 182 330 855
Prod Motor Weight (Ibs) 280 290 350
Prod Warhead Weight (Ibs) 20 25 35

Prod IAT&C First Unit Hrs (Third Party Tool) 240 450 675

Figure 5-3 ¢eSBM Example Model Scenarios

It is necessary in eSBM to anchor the point estimate to a point on a cumulative probability distribution.
While a wide variety of choices are available, in this example, the mean was used since the calculation
method was shown in Section 5.2.3. The point estimate, in any event, should be developed with its
corresponding value on the S-curve in mind. For the missile example, the unadjusted baseline cost estimate
of $277M (TYS) is regarded as falling at the 30th percentile on the S-curve based on expert opinion
regarding estimates of this type. The last piece of the puzzle is to estimate the CV from historical data.
Ideally, data related to the program can be found and analyzed to estimate the CV. Alternatively, Table 3-4
or Figure 5-4 (see Reference 77) can be used to estimate the CV for the missile production cost.

Estimated CV Bands by Milestone
All data A& Data=>80s @ Data=>90s
14 === :
i | ro-—----
1 1.2 ! | Quantity 1
1.2 ! | | Random |
| | 'TYS  BYS:, | ___
s 10 - : : : — o
B i 0.8, ! 0.9 | Quantity | 1 Quantity |
S 08 s ‘ 1 0.8 , | Exogenous | i Random !
= e ! I 06! TS BYS[ITVS BYS
S 06 L 0.8 ! 05| % ! 105 i Quantity
:]C: ' | Quantity ! ‘ ‘ @ : : 0 : 0.5, Exogenous
o i Random ' g5 0.5 1 0.5 0.5! 0.4 | T [ S BYS
5 04 [ms s f— ; gl o
S 02 Quantity 03 03| L
: Exogenous 103 o3 ! [
TY$  BYS f=mmmmm- 0.2
0.0 0.1
Milestone A Milestone B Milestone C
Estimated by Analogy

Figure 5-4 Estimated CVs By Milestone for Navy Major Programs
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In the missile example, a CV of 40% is chosen, which is the midpoint CV value at MS B for Navy programs
(Figure 5-4). In this case, the 40% CV is a value based on acquisition outcomes expressed in Then-Year
dollars but adjusted for changes in quantity. By using TY dollars, it captures, to some degree, the variability
of the rate of inflation over time. Quantity changes, in many cases, are best handled as what-if excursions
with their own s-curves. Table 5-1 shows the calculations to convert the PE, CV, and PE probability to unit

space mean and standard deviation to model a lognormal distribution.

Table 5-1 eSBM Example Calculations

Element ID| Value |Comment/Formula
Point Estimate PE| $277 |[TY $M
Coefficient of Variation cv 0.4 SAR Growth Study

Probability of PE[ ProbPE| 0.300 [Expert Opinion

Standard Normal SN| -0.524 [NORM.S.INV(ProbPE)

LN Mean| LMean| 5.826 [LN(CV)-SN*SQRT(LN(1+CV"2))

Unit Space Mean| Mean| $365 [EXP(LMean+0.5*LStdev'2)

LN Std Dev| LStdev| 0.385 [SQRT(LN(1+CV”"2))

The calculations in Table 5-1 completely define the s-curve. Figure 5-5 illustrates the results with the

baseline PE and the scenarios also plotted.

Estimated Total Missile Cost
TY $M, CV=0.40

60%

PE, $277, 30%

e A

| Optimistic, $236,

17% 7 : """""""""""""

10%

Estimated Cumulative Probablity

0%

00U -
80%
BO% oo

L e - - A

R

S —
30% ———

50 $100 $200 $300 $400 $500

$600 $700

Figure 5-5 Example eSBM Result

5.3 METHOD OF MOMENTS

An analytical method to estimate uncertainty is called the “method of moments”. The method of moments in
the context of cost uncertainty analysis is the estimation of a total-level mean and variance from the sum of
the subordinate elements. With knowledge of the mean and standard deviation for each element and how
they are correlated, the mean and standard deviation at the parent levels can be calculated without the need
for simulation. A detailed description of the method can be found in Reference 11.
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In Section 3.3.3 the method of moments is used to analytically calculate the total mean and standard
deviation from the sum of five different correlated distributions. What is not known is the distribution shape
at the parent level. However, a reasonable approach is to assume a lognormal distribution in order to
estimate values at specific probabilities. Method of moments is a convenient approach when the model is a
simple sum of uncertain elements, particularly if there are a large number of them. However, there are
several complications, including:

0 the variance sum must be adjusted for correlation,
0 distributions at the parent levels are assumed rather than derived, and

0 efforts to combine uncertainties (such as the uncertainty of the cost driver and the CER) can lead
to complex calculations.

Consequently, the method of moments is not recommended for general use. However, the method of
moments is effective in situations that sum large numbers of uncertain throughputs. For more information on
the method of methods, see Reference 11.

5.4 OUTPUTS-BASED SIMULATION METHOD

The outputs-based method applies uncertainty directly to the results (cost model outputs) rather than to the
model’s inputs. The analyst selects uncertainty distributions for the WBS element outputs to address the
combined uncertainty of the cost method and the cost method inputs. Figure 5-6 shows the point estimate
results for the EMD phase of the example model. The uncertainty defined in Figure 5-6 is drawn from
CRUAMM (Reference 73 and Attachment 1) where possible, otherwise Table 2-9 as noted. Further, these
elements have 0.3 correlation applied as depicted in Figure 5-7.

Distribution Parameters
Point Forecast | Distribution Point Uncert [ Minor | Most Max or
DETAIL ESTIMATE based on PEs | Estimate | BY 2014 Form | Estimateis:| ainty | 15% | Likely | " | gs9 | St9DeY Source
Missile System
Engineering and Manufacturing D4 $83,539 $83,539
Air Vehicle $14,944] $14,944]
Design & Development $12,000 $12,000] Lognormal Median 1 1.338 1.189 [CRUAMM
Prototypes $2,944] $2,944| Lognormal Median 1 1.315 1.123 [CRUAMM
Software $31,500 $31,500] Lognormal Median 1 0.696 1.063 | 1.437 Last Resort Table
System Engineering $17,500] $17,500| Triangular Mode 1 0.119 | 1.000 2.074 CRUAMM
Program Management $15,000 $15,000] Triangular Mode 1 0.876 | 1.000 1.914 Last Resort Table
System Test and Evaluation $1,767| $1,767| Lognormal Median 1 1.366 1.271 [CRUAMM
Training $897 $897| Lognormal Median 1 0.627 1.107 | 1.594 Last Resort Table
Data $1,196 $1,196| Lognormal Median 1 1.904 3.086 |CRUAMM
Peculiar Support Equipment $736] $736| Triangular Mode 1 0.876 | 1.000 1.914 Last Resort Table

Figure 5-6 Outputs-Based Uncertainty
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DesignDev_EMD 1.000| 0.300( 0.300| 0.300| 0.300f 0.300| 0.300f{ 0.300| 0.300
Proto_EMD 1.000| 0.300| 0.300f 0.300| 0.300( 0.300] 0.300( 0.300
SW_EMD 1.000| 0.300] 0.300{ 0.300( 0.300f 0.300| 0.300
SysEng_EMD 1.000| 0.300[ 0.300( 0.300f 0.300| 0.300
PM_EMD 1.000| 0.300| 0.300f 0.300( 0.300
STE_EMD 1.000| 0.300| 0.300( 0.300
Trg_EMD 1.000] 0.300( 0.300
Data_EMD 1.000| 0.300
PSE_EMD 1.000

Figure 5-7 Outputs-Based Correlation Matrix
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6.0 PORTFOLIO LEVEL CONSIDERATIONS

This section of the handbook explores the impact of project probability selection in a portfolio of projects
situation. Please see Reference 29 for a similar discussion.

The simplest way to generate the uncertainty distribution at the portfolio level is to model each project using
their median and 85% result to define a lognormal distribution (see Section 2.4.4), a fitted distribution (see
Section 2.4.3) or an empirical distribution (see Section 2.4.3.6). It is then necessary to assign correlation
between the projects. In the absence of any other rationale, assigning the default 0.3 is appropriate.

Table 6-1 defines the uncertainty distributions for eight example programs in a portfolio. In this example,
each project’s point estimate represent very different probabilities. The first four are at the median; the last
four are at the 25% probability (consistent with a right skew triangle, see Section 2.5.5). The point estimate
is not the proposed budget, simply a selected point on each distribution that best fits the source model
distribution. With these very different distribution shapes and dispersion, the following explores the effects
of correlation on various percentile results at the parent level.

Table 6-1 Distributions Fitted to Project Uncertainty

WBSICES ThErSF:ut Dist PEPos | CV | Low % |High % | L Perc | H Perc
Portfolio Total
. Lognormal High 1000 LogMormal Median  0.35
Lognormal Low 100, LogMormal Median,  0.15
Mormal High 100 Mormal Mean| 0.35
MNormal Low 100 Mormal Mean| 0.15
Triangular High Right 1000 Triangular Mode 903 171 15 85
Triangular Low Right 100 Triangular Maode 959 1305 15 85
BetaPert High Right 100 BetaPert Maode 90.3 1711 15 85
BetaPert Low Right 100 BetaPert Maode 959 1305 15 85

Table 6-2 illustrates the difference between the simulation result and the sum of the projects when they are
budgeted to a specific probability (each block is a different project probability scenario). Additionally, each
column identifies the correlation applied across all the projects.

Table 6-2 Portfolio Total Results at Various Project Probabilities

Correlation of Projects 0.00 0.30 0.50 0.90)
Probability Level 30% 30% 30% 30%
Portfolio Total at Selected Probability Level $846 $835 $820 $775)
Sum of Projects at Selected Probability Level $762 $762 $762 $762
Probability of Sum of Projects 5% 9% 15%) 27%
Probability Level 50% 50% 50% 50%
Portfolio Total at Selected Probability Level $887 $886 $883 $871
Sum of Projects at Selected Probability Level $866 $866 $866 $866
Probability of Sum of Projects 40%) 42% 44%) 49%
Probability Level 60% 60% 60% 60%
Portfolio Total at Selected Probability Level $908 $911 $915 $922
Sum of Projects at Selected Probability Level $923 $923 $923 $923
Probability of Sum of Projects 67% 64% 62% 609
Probability Level 70% 70% 70% 70%
Portfolio Total at Selected Probability Level $930 $939 $951 $978
Sum of Projects at Selected Probability Level $987 $987 $987 $987
Probability of Sum of Projects 89% 84% 78% 719%
Probability Level 90% 90% 90% 90%
Portfolio Total at Selected Probability Level $994| $1,019( $1,051| $1,148
Sum of Projects at Selected Probability Level $1,176| $1,176 $1,176| $1,176
Probability of Sum of Projects 100%| 100% 98% 92%
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This example assumes that the dollars saved from one project can be moved to another. Put another way, the
risk dollars are managed at the portfolio level. There are several key observations from this example:

e Budgeting all projects at 50% will lead to a portfolio budget that has a probability of less than 50%,
even at very high correlation between projects.

e Budgeting all projects at 70% provides a much higher probability of success at low correlation levels
(which is likely realistic).

e Budgeting all projects at 60% leads to a portfolio probability near 60% at all levels of correlation.
This is because 60% tends to be close to the mean of most project simulation results (the CISM
model is near 57%). Since means sum, the sum of percentiles close to the mean will approximate the
parent mean.

e If all projects are budgeted less than the mean, the total at the portfolio level will be at a lower
probability than the projects. The opposite is true if projects are budgeted above the mean.

The 60% values will not be much higher than the mean values for most projects. Setting 60% as a budgeting
goal treats each project the same. Budgeting to the mean results in projects having different probabilities
(albeit not very different).

Budgeting all projects to the same probability treats each project the same.
Budgeting all projects to their respective means sets them to different probabilities.
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APPENDIX A TERMINOLOGY AND DETAIL

This appendix presents definitions for technical terms used throughout this handbook and some additional
detail on specific concepts and process. Many publications contain definitions of each of these terms and
processes, often in conflict with one another. Therefore, this appendix elaborates on many of these concepts
mathematically and graphically to clarify their use in this handbook.

A.1 DEFINITIONS

A.1.1 Deterministic

Deterministic refers to events that have no random or probabilistic aspects but proceed in a fixed predictable
fashion. A deterministic model consists of an exact relationship; for example, if the labor rate (LabRate$) is
known and the man-hours (Mhrs) are known, then the cost is known by calculating LabRate$*Mhrs. Unlike
a stochastic model, a deterministic equation has no random error. However, there may be error in the
variables, meaning LabRate$ and Mhrs may not be known exactly. In this case, however, there is still no
error associated with the equation.

A.1.2 Stochastic

Stochastic refers to patterns or processes resulting from random factors. Unlike a deterministic model, the
equations and/or their parameters are not known with certainty but only with some amount of probability.
For example, the labor rate and the man-hours are only known within some degree of probability and
therefore the cost calculated by LabRate$*Mhrs is only known within a user specified probability.

A.1.3 Coefficient of Variation (CV)

CV is the standard deviation divided by the mean. The result is a unitless measure of the distribution
dispersion.

A.1.4 Confidence Interval and Confidence Level

A confidence interval is an interval estimate for an unknown population parameter in a probability
distribution. A confidence interval is used to indicate the reliability of a point estimate—the tighter the
interval, the more reliable the point estimate is at a given confidence level. For example, when estimating
the mean of a normal distribution, the sample mean is a point estimate of (or best guess) for the value of the
mean. However, this estimate is almost surely not equal to the population mean. A confidence interval
identifies a range around the estimate for the population mean. The width of that range is a function of the
confidence level. The confidence level associated with the interval (e.g., 80%, 90%, or 95%) is the
proportion of times in which the interval will contain the true value of the unknown parameter.

A.1.5 Cost Contributors and Cost Drivers

When asked to identify the cost drivers in a cost estimate, those asking the question may define cost driver
different than the person answering the question. For some, the project cost drivers are the WBS elements
(generally at a lower level) that have the highest cost. For others, project cost drivers are the cost estimating
method input variables that have the most influence on the total cost of interest. To draw a distinction
between these two concepts, the following terms are defined for this handbook:

e Cost Contributors: child WBS elements that influence the total cost or total uncertainty of interest

e Cost Drivers: cost estimating method inputs that influence the total cost or total uncertainty of
interest
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A.1.6 Nunn-McCurdy Breach

The following is an extract from Reference 67:

“For more than 25 years, the Nunn-McCurdy Act (10 U.S.C. § 2433) has served as one of the principal
mechanisms for notifying Congress of cost overruns in Major Defense Acquisition Programs (MDAPSs).
Nunn-McCurdy establishes different thresholds to determine if a MDAP or designated major subprogram of
a MDAP experiences a cost overrun (for purposes of this report, the term program will refer to MDAPs as
well as designated major subprograms). These thresholds are based on a comparison between a program’s
actual costs and the current baseline estimate or the original baseline estimate (defined below). A program
that has cost growth that exceeds any of these thresholds is said to have a Nunn-McCurdy breach and must
notify Congress of the breach.

There are two categories of breaches: significant breaches and critical breaches. As shown in Table A-1, a
“significant” Nunn-McCurdy breach occurs when the Program Acquisition Unit Cost (PAUC- defined as the
total cost of development, procurement, and construction divided by the number of units) or the Procurement
Unit Cost (PUC- defined as the total procurement cost divided by the number of units to be procured)
increases 15% or more over the current baseline estimate or 30% or more over the original baseline
estimate.6 A “critical” breach occurs when the PAUC or PUC increases 25% or more over the current
baseline estimate or 50% or more over the original baseline estimate.

Table A-1 Nunn-McCurdy Breach Thresholds

Significant Breach Critical Breach
Current Baseline Estimate 2|5% 225%
Original Baseline Estimate 230% 250%

Source: |0 US.C. § 2433,

According to Title X of the U.S. Code, the Department of Defense (DOD) is required to establish a baseline
description of all major defense acquisition programs when the program is officially started. This baseline
description includes information on the program’s planned cost, schedule, and performance. The cost
information is referred to as the “baseline estimate”. The baseline description (including the cost estimate) is
contained in the Acquisition Program Baseline (APB).8

APBs are required to initiate a program, and can only be revised:
e at the milestone reviews or when full rate production begins
e if there is a major program restructuring that is fully funded, or

e as a result of a program breach if the breach is primarily the result of external causes beyond the
control of the program manager

Under current DoD policy, current APBs cannot be revised just to avoid a Nunn-McCurdy breach. An
original baseline estimate is the cost estimate included in the original (first) APB that is prepared prior to the
program entering “engineering and manufacturing development” (also known as “Milestone B”), or at
program initiation, whichever occurs later. An original baseline estimate can only be revised if the program
has a critical Nunn-McCurdy breach (see Table 1).

A current baseline estimate is the baseline estimate that is included in the most recently revised APB. If the
original baseline estimate has not been revised, the original baseline estimate is also the current baseline
estimate.” <end of extract>

Reference 54 defines Major Automated Information System (MAIS) and provides an overview of
congressional reporting requirements. Senior officials must review the MAIS Program Manager’s quarterly
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reports to determine whether a significant or critical change has occurred. A significant change is when any
of the following has occurred:

Schedule: a delay of more than six months but less than a year in any program schedule milestone or
significant event from the initial baseline

Cost: estimated program development cost or full life-cycle cost for the program has increased by at
least 15 percent, but less than 25 percent, over the original estimate

Performance: a significant, adverse change in the expected performance of the major automated
information system to be acquired

A critical change to a MAIS program has occurred if:

Time certain development: failure to achieve IOC within five years of milestone A approval

Schedule: a delay of one year or more in any program schedule milestone or significant event from
the original baseline

Cost: the estimated program development cost or full life-cycle cost for the program has increased
by 25 percent or more over the original baseline

Performance: a change in expected performance that will undermine the ability of the system to
perform the functions anticipated in the original baseline

To put the cost values into perspective, Figure A-1 illustrates them plotted against lognormal cumulative
probability curves (s-curves). The labels identify the probability the program will come in at or below these
values. For instance, if the program’s baseline s-curve has a 0.10 CV, there is almost no chance for a
significant or critical breach. Even when the CV is 0.3, the implication is that there is only a 6% chance of a
critical breach. While comforting, these results are not consistent with history. Many projects have suffered
a breach. Figure A-1 suggests that CVs less than 0.15 at Milestone B may be too optimistic. For further
discussion on how excessive optimism and unrealistic cost estimates have been blamed for various breaches,
please read Reference 67.
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Nunn-McCurdy Breach Values on Lognormal S-Curves
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Figure A-1 Nunn-McCurdy Breach Values on Lognormal S-Curves

A.1.7 Risk

Risk is the possibility of incurring loss or misfortune. In the context of cost estimating, risk is the possibility
the program will not be able to complete on budget. Too often analysts will use the terms risk and
uncertainty interchangeably. In this handbook, “risk™ is derived from an “uncertainty” analysis. Having
developed the uncertainty distribution for the project total cost and duration, the analyst can estimate the risk
in terms of probability of the completed project exceeding a specified budget and/or schedule.

A.1.8 Standard Error of Estimate (SEE)

The standard error of estimate (SEE) derived from a regression analysis is an estimate of the standard
deviation about the regression line. It measures the amount of dispersion of the CER errors (or it provides
one-sigma spread of the CER errors). It provides a measure of “average” distance of the sample data from
the regression equation. The SEE should be adjusted to account for the distance of the estimate from the
center of the CER dataset when generating prediction intervals. It is also known as the Standard Error of the
CER, and for multiplicative error CERs it is often called the standard percent error (SPE).

A.1.9 Integrated Master Plan (IMP) and Schedule (IMS)

The IMP defines a hierarchy of program events, in which each event is supported by specific
accomplishments, and each accomplishment is based on satisfying specific criteria to be considered
complete. The IMS is an integrated, networked schedule containing all the detailed discrete work packages
and planning packages (or lower-level tasks of activities) necessary to support the events, accomplishments,
and criteria of the IMP.

The IMP and IMS are business tools to manage and provide oversight of acquisition, modification, and

sustainment programs. They provide a systematic approach to program planning, scheduling, and execution.

They are equally applicable to competitive and sole source procurements with industry, as well as to
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government-only, in-house efforts. They help develop and support program/project budgeting, and can be
used to perform "what-if" exercises and to identify and assess candidate problem workarounds. Finally, use
of the IMP/IMS focuses and strengthens the interaction between the government and contractor teams with
respect to program execution.

The IMP should provide sufficient definition to track the step-by-step completion of the required
accomplishments for each event, and to demonstrate satisfaction of the completion criteria for each
accomplishment. Events in the IMP are not tied to calendar dates; they are tied to the accomplishment of a
task or work package as evidenced by the satisfaction of the specified criteria for that accomplishment. The
IMS should be defined to the level of detail necessary for day-to-day execution of the program.

To build a reasonable IMP and IMS, you need to estimate the attributes of work products and tasks,
determine the resources needed, estimate a schedule, and identify and analyze program risks.
Accomplishments in the IMP should have criteria for determining completion with clear evidence so that the
entire program team can understand the progress.

The IMS and IMP should be traceable to the work breakdown structure (WBS), and be linked to the
statement of work and ultimately to the earned value management system (EVMS). The WBS specifies the
breakout of work tasks on which the IMP and IMS should be built on and on which the EVMS should report
on. A good WBS includes key work efforts partitioned into discrete elements that result in a product (i.e.,
document, software item, test completion, integrated product) or in measurable progress (percent complete is
not recommended when the end state is not completely quantifiable—an issue in software development, test
procedures, or training materials). With a good WBS foundation, both the IMP and IMS can be more useful
tools; with the IMP integrating all work efforts into a defined program plan, and the IMS summarizing the
detailed schedule for performing those work efforts. The IMP is placed on contract and becomes the baseline
execution plan for the program/project. Although fairly detailed, the IMP is a relatively top-level document
compared to the IMS. The IMP has several levels of detail.

e Level 1 of the IMP is Program Events (PE). These are the major milestones and activities that occur
on a program. Generally, there should not be more than about 10 - 20 PEs on a program.

e Level 2 of the IMP is Significant Accomplishments (SA). These are the major items a project must
accomplish to meet the PE.

e Level 3 of the IMP is Accomplishment Criteria (AC). These are the more-detailed items or checklists
of how a project meets its SAs.

e Level 4 of the IMP is generally the detailed tasks of each SA. These details are what will become the
IMS tasks.

For further detail, see Reference 42.

A.2 POINT ESTIMATE

A.2.1 Why a Point Estimate is Uncertain

Unless each child of the cost estimate is known with certainty, the point estimate represents only one of
many possible outcomes. A decision-maker who must decide on the "official" budget should make that
decision in the context of the point estimate with respect to all other outcomes. That is the central point of
risk and uncertainty analysis -- quantifying the possible outcomes and their likelihood so that an informed
choice can be made. Recognizing that there is more than one outcome raises two interesting questions. One,
what causes there to be more than one outcome and, two, if there is more than one outcome, which one does
the aggregated point estimate represent?
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The answer to the first question is simply that estimating techniques are not sufficiently precise to capture all
the vagaries associated with producing an estimate. To the extent historical data is used, uncertainty creeps in
because no two programs or projects are identical: each is unique unto itself. The technology employed, the
schedule, the contractor(s), and the budget climate all contribute to the unique character of each program and
its data points. Moreover, even if the past is perfectly known, the future is not. Considering the educated
guesses that an analyst must make in developing an estimate, it is no surprise that a cost estimate is just that:
an estimate.

The second question can be even more perplexing. If the point estimate is composed of several subsidiary
estimates, what is the likelihood at the total level? There are many possible results; here are three:

e Consistently Symmetric Uncertainty: If each cost element is estimated at its most-likely cost and
the uncertainty is symmetric and centered on the cost (that is, for each element, the mean, median,
and mode are the same), it would be reasonable to expect that the total point estimate represents a
cost where there is a 50-percent chance of overrun and a 50-percent chance of underrun.

e Summing Modes: Suppose the uncertainty surrounding each of the cost elements varies and is not
always symmetric. The sum of those cost elements no longer produces a point estimate with a 50/50
overrun/underrun chance, because it is not known what is being summed. It could be argued that the
most-likely (mode) value for each element is being summed, but this does not necessarily result in the
most-likely (mode) total.

¢ Summing Means, Medians, Modes or Something Else: This is the most common situation. Even if
the estimating method is known to return the mean of the CER, if it is being influenced by uncertain
inputs it is unclear what the point estimate result represents.

For cases 2 and 3 (which are the most common in cost estimates), the resulting sum is not at the 50/50
overrun/underrun position nor is the overrun/underrun position of that sum known or easily deduced. The
likelihood of the point estimate is unknown and the likelihood of the other outcomes are also unknown. Risk
and uncertainty analysis is used to estimate the likelihood of any point estimate.

A.2.2 Content of a Point Estimate

Typical contents of a cost point estimate include:
e Work Breakdown Structure (WBS) to identify all the elements requiring a cost estimate
e Technical parameters that properly define the system to be estimated

e Rates and factors such as labor rates, head counts, fee, overhead, operating hours, or man-hour rates,
and other programmatic cost drivers

e A schedule that properly reflects how the project will unfold

e An assessment of the risk register that will list events that, should they occur, will have an impact on
the project cost and/or schedule. The impact could be positive (opportunity) or negative (risk). It is
recommended that the point estimate for risk register items are zero. For a high probability item, an
alternative is to include the consequence in the point estimate and define a low probability risk
register item that represents the saving (opportunity) that the item does not occur.

A.3 UNCERTAINTY

A.3.1 Overview

Uncertainty is defined as a potential deficiency in any phase or activity of the cost estimating process due to
a lack of knowledge or due to random variations in the cost estimating process. The analyst’s challenge is to
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adequately capture and model the complete uncertainty associated with the cost estimate. This includes the
impact of schedule and risk register uncertainty.

A.3.2 Objective Uncertainty

Objective uncertainty associated with cost model parameters is a measure of source data variability. If the
cost estimating relationship (CER) or the input(s) to the CER are derived from statistical analysis of relevant
historical data, the uncertainty associated with the cost estimate can often be characterized “objective,”
meaning derived using a repeatable, proven process. The basis for the uncertainty calculation is a function of
how the estimate is derived. In the sections that follow, the most common methods for deriving CERs are
introduced with their associated “objective” uncertainty. The uncertainty model is designed to capture and
combine both CER and the CER input uncertainty.

A.3.3 Distribution Boundaries for Objective Distributions

If statistical methods have been used to generate the CER, the analyst should have the necessary information
to replicate the uncertainty in the cost model. Ideally, the CER statistics will provide the bounds for a
specific confidence level. More often than not, however, the analyst will be provided with other data such as
the standard deviation for a specific position within the data set. As illustrated in Figure A-2, uncertainty
will increase (standard deviation gets larger) as the point estimate moves towards (and beyond) the data
boundaries. The minimum information required is the CER result and the standard deviation for that result.
Analysts should take care when interpreting a CER result. For instance, a loglinear CER developed using
ordinary least squares will give the median of the distribution, not the mean. Also, it is common for the
standard deviation to be expressed in log space and it would need to be converted to unit space for use in the
cost model. See Appendix A.6.4 for details.
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Figure A-2 Objective bounds a function of distance from data center

A.3.4 Subjective Uncertainty

In the context of cost and schedule estimating, many decisions that heavily influence the risk analysis will be
subjective in nature, meaning they are based more on “expert opinion” than rigorous statistical analysis.
Uncertainty is characterized as “subjective” when there is a lack of information to characterize it objectively.
Subjective uncertainties have long been criticized for their lack of rigor and have relatively poor standing in
fields driven by empirical study, where matters of precision and repeatability are considered paramount.
Nevertheless, subjective uncertainty plays a large role in cost and schedule estimates due to limitations in
time, resources and relevant data.
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A.3.5 Cost Estimating Uncertainty

Cost estimating uncertainty is the uncertainty associated with the estimating method that is employed.
General cost estimating methods include: analogy, engineering build-up, and parametric. Each methodology
and/or technique has its own, unique level of uncertainty. The fact is that our estimating methods, data, and
tools are neither totally precise nor totally accurate, although frequently precision is used as a substitute for
accuracy. If the method is merely the sum of labor and material costs, the analyst must assess the cost
uncertainty to capture rate, technical, configuration, and schedule uncertainty. When the method is
parametric or a single point analogy, there is technical, configuration, and schedule uncertainty embedded in
the underlying data used to create the method. For parametric CERs, the uncertainty is also a function of
where the point estimate will fall in the data range (the further the input variable is from the center of mass
data used to derive the CER, the greater the uncertainty of the CER). Several other subjective factors may
influence how the analyst should adjust (subjectively) the objective uncertainty associated with the method,
such as: deficiencies in the quality of the data due to variations in contractors’ accounting practices;
assumptions made to normalize the data; and other cost estimating influences not captured by the cost
estimating method.

A.3.6 Configuration Uncertainty

Configuration uncertainty is the variation in the fundamental technical cost drivers of a WBS element.
Configuration uncertainty is a form of technical uncertainty. From the cost estimator’s perspective,
configuration uncertainty falls into two categories: uncertainty in input parameters that are captured by the
cost model and uncertainty in parameters or basic configuration features that cannot be addressed without
modifying the structure of the cost model. An example of the first type of uncertainty event would be design
changes that reduced the weight of an antenna by 12 1b. An example of the second kind of uncertainty event
would be a requirements change that switched from a mechanically-steered antenna to a phased array
antenna.

A.3.7 Technical Uncertainty

Ideally, to generate a parametric CER, the analyst will select and use relevant historical data that were
successful in meeting similar technical challenges to the program being estimated. By doing so, the
technical uncertainty is at least somewhat captured by the analysis of that data. However, if the program to
be estimated is facing unusual technical challenges, then an adjustment to the CER uncertainty distribution is
required. The same can be said about an analogous estimate.

A.3.8 Schedule Uncertainty

Schedule uncertainty is the variation in the possible key dates associated with a WBS item. The elemental
units of a program’s schedule are called activities. A WBS item normally comprises several schedule
activities. The duration of the individual schedule activities is driven by three factors: the technical difficulty
of the work to be performed, the qualifications of the people performing the work, and the availability of an
adequate number of people/resources to do the work. In other words, schedule uncertainty is driven by
technical uncertainty. Schedule activities influence each other through precedence relationships (e.g.,
Activity C cannot begin until Activities A and B are complete). Schedule precedence relationships often cut
across WBS items. Because of these interrelationships, schedule slips in one WBS item can impact the
duration of activities in other WBS items, and can actually increase the labor hours in the impacted items.
Programs that have a high degree of technical interrelationship between activities and a high degree of
concurrent activity, inherently have high schedule uncertainty. In other words, the topology of the program
schedule has a strong impact on the schedule uncertainty.
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A.4 DESCRIPTIVE STATISTICS

In this section we will provide the definitions for the most common statistics used to quantitatively describe
the main features of a collection of data. A univariate analysis is the process of describing the distribution of
a single variable, including its central tendency (including the mean, median, and mode) and dispersion
(including measures of dispersion (spread) such as the variance and standard deviation and the range and
quartiles of the data set). The shape of the distribution may also be described via indices such as skewness
and kurtosis (peakness).

A.4.1 Expected Value, Average or Mean

The expected value is the arithmetic average or mean of the distribution of possible values for a variable. For
a given set of n values (y1, y2, ..., ¥n), the mean ( ¥ ) is defined to be the arithmetic average of these n values.

In mathematical notations, it is given by

Equation A-1 Arithmetic Mean

Ziyi
n

y =
The arithmetic mean is a composite measure and has the following characteristics:
e The most widely known and used average.

e [tis an artificial value, since it may not coincide with any actual value.

e [t is affected by the value of every item, but may be unduly affected by extreme values especially in
small data sets.

Figure A-3 shows how the expected value is simply the sum of all values divided by the number of values.
Expected values have an important mathematical property: the sum of the expected values of a set of
variables is equal to the expected value of the sum of the set of variables. In other words, when summing the
expected values of a number of WBS items, the result will be the expected value of the sum of the WBS
items.

A.4.2 Geometric Mean

It is not common for statistical packages to report the geometric mean by default or as part of a descriptive
statistics summary (for a discussion on the difference between the arithmetic and geometric mean in the
context of cost analysis, see Reference 66). It is, however, an important concept for cost analysis as it takes
the effect of compounding into account. The geometric mean is used when the average rate of growth is to
be measured (as opposed to the arithmetic mean that is appropriate when the average of a number of values
is of interest). The geometric mean is given by:

Equation A-2 Geometric Mean

Ve zq/xl X, Xy K x
To illustrate the proper use of the geometric mean, consider a situation where $100 is inflated from FY 2000
for ten years. We are accustomed to simply referring to inflation tables to extract and use the total inflation
factor. What if we were interested in calculating the mean inflation factor over the ten-year period? Table
A-2 shows the explicit calculation of applying the OSD raw inflation year by year to arrive at the value at the
end of 10 years of inflation (column 3 and 4). Three different ways to calculate the mean inflation are
illustrated in columns 5 — 7: two are incorrect and one is correct.
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e Method A calculates the difference between the ending and beginning values; divides by the original
value (100); and further divides that by the number of periods (1) to arrive at a mean inflation.

e Method B is the arithmetic mean of the ten inflation factors.

e Method C is the geometric mean of the ten inflation factors and is the correct method.

Method A, in this case, returns the least accurate result. Method B may be intuitive for some, and in this
case it is near the correct result, but it is nonetheless wrong. Method C delivers the correct result,
demonstrating that when the result depends on individual rates being multiplied together, the geometric mean
is the correct approach.

Table A-2 Geometric Mean Example

1 2 3 4 5 | 6 | 7
End of OSD Inflation Inflate by Direct Inflate Using Mean From:
FY Inflation | Factor Year Calculation A B C
2000 100.00 100.00 100.00 100.00
2001| 1.80% 1.018 100.00 * 1.018 = 101.80 102.06 101.89 101.89
2002 0.80% 1.008 101.80 * 1.008 = 102.61 104.15 103.82 103.81
2003] 1.00% 1.010 102.61 * 1.010 = 103.64 106.29 105.78 105.77
2004| 2.00% 1.020 103.64 * 1.020 = 105.71 108.48 107.78 107.76
2005 2.80% 1.028 105.71 * 1.028 = 108.67 110.71 109.81 109.80
2006 3.10% 1.031 108.67 * 1.031 = 112.04 112.98 111.89 111.87
2007 2.70% 1.027 112.04 * 1.027 = 115.07 115.31 114.00 113.98
2008| 2.40% 1.024 115.07 * 1.024 = 117.83 117.68 116.16 116.13
2009 1.50% 1.015 117.83 *1.015 = 119.60 120.09 118.35 118.32
2010 0.80% 1.008 119.60 * 1.008 =| 120.5532 122.5621| 120.5912| 120.5532
Total Inflation| 120.55 - 100.00 = 20.55
Mean Inflation| 1 + 20.55/100/10 =]  1.0206 A
Inflation
Factor
Arithmetic Mean| 1.01890 | B
Geometric Mean| 1.01887 | C

A.4.3 Median

The median is the point in a distribution where half the observed values will be lower and half will be higher
(the 50th percentile). In other words, this is the point where the actual cost is just as likely to be higher as it is
to be lower. For a finite number of observations, if the sample size is odd, the median is the middle value. If
the sample size is even, the median is the average of the middle two values. The sum of the medians of a
number of WBS items is not equal to the median of the sum of the values, except in the unusual cases in
which the distributions of all the WBS items are symmetrical.

A.4.4 Most-likely Value (Mode)

The mode is the most probable single value for a variable (the peak of the distribution, see Figure A-3). The
output of the primary estimating methodology (i.e. the point estimate) for a WBS item is typically interpreted
as the most-likely value. The sum of the most-likely values of a number of WBS items is not equal to the
most-likely value of the sum of the values, except in the unusual case in which the distributions of all the
WBS items are symmetric.
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A.4.5 Skewness

A distribution is said to be skewed if one of its two tails is longer than the other. For example, if there is a
long tail to the right of the distribution, then it is said to be positively skewed (or skewed right). This means
that the distribution has a long tail in the positive direction. Similarly, if there is a long tail to the left, then
the distribution is said to be negatively skewed (or skewed left). If the distribution is symmetrical, then the
distribution has no skew. For example, the normal distribution has a skewness value of 0 since it is a
symmetric distribution.

For a random variable Y, the measure of skewness is a parameter that describes asymmetry in the probability
distribution of Y. It is defined by

Equation A-3 Skewness

3
Skewness (Y)=E (Mj
o

where p and o are the mean and standard deviation of the random variable Y, respectively. As for a sample
data set of n values (y1, y2, ..., yn), the formula to compute the skewness factor is given below:

Equation A-4 Skewness for a Sample

_ n 1L yi_)_} 3_ n Z(yi_.)_})S
Skewness (1) = -2) Z}( s J S (=D(=2) G5 X =D

where s is used to denote the sample standard deviation. Note that Equation A-4 is the adjusted Fisher-
Pearson standardized moment coefficient. It is used to calculate the skewness measure in Excel and several
statistical packages, including Minitab, SAS, and SPSS. As a general rule, the mean is larger than the
median in positively skewed distributions and less than the median in negatively skewed distributions.
Although counter examples can be found, they are rare in real data.

Another definition of skew, used in this handbook and commonly used elsewhere, is the measure of the
area to the left of the mode of the distribution. If the area is half the total area, the distribution is symmetric.
A skew of 0.25 would mean that 75% of the distribution is to the right of the mode, making it a skewed right
distribution. In the case of triangles the skew can be calculated from the min, mode and max given the area
under any probability distribution is equal to 1. The formula reduces to:

Equation A-5 Simplified Skewness Formula Applicable to Triangles
Triangular Skew = (Mode-Min)/(Max-Min)

The same equation is valid for a uniform distribution. This fact is used to calculate the adjustment for skew
described in Section 2.5.4.

A.4.6 Variance

The variance is the average squared distance of each value from the mean, but it is not expressed in the units
of measure of the mean or the original data. The measure of variance is greatly affected by extreme values.
To calculate the variance, first calculate the arithmetic mean and then for each data point, find the difference
between the point and the mean. Next, square all these differences and sum them. This sum is then divided
by the number of items in the data set (if the data is from a sample rather than the entire population, the sum
is divided by the number of items minus one).
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A.4.7 Standard Deviation

The standard deviation is one of the most widely used statistics for measuring the spread, or dispersion, of
values in a population of data. For a given set of n values (y1, 2, ..., yn), the standard deviation (Stdev or S)
is defined by

Equation A-6 Standard Deviation For a Sample or Population

S (5 - 7)
i=1

n—1

if datais from a sample —Std. Dev.(Sample)

S (55 - 7)
i=1

n

if datais from a population — RMS (Population)

In essence, the standard deviation measures the amount of spread about the mean in the data set. It is also
greatly affected by extreme values. The standard deviation is the square root of the variance. However,
unlike the variance, the standard deviation is in the same unit of measure as the data, and this is a primary
reason for its popularity. By default, tools like Excel calculate the sample standard deviation.

A.4.8 Coefficient of Variation
The coefficient of variation (CV) of a distribution is defined as the ratio of the standard deviation to its mean.
Equation A-7 Coefficient of Variation

CV = Stdev/Mean

CV is a relative measure of dispersion because it expresses the standard deviation as a percentage of the
mean. CV is one of the more recognized metrics to characterize the spread in a sample or a population.
Whenever an S-Curve is displayed, the CV should also be displayed. Without it, the scale of the chart can
provide a misleading sense of the dispersion. CV is also known as a normalized measure of dispersion for
data that can only take non-negative values. The measure of CV would be meaningless for a data set running
from a negative region to a positive region.

A.4.9 Inter-quartile Range

The inter-quartile range is the length of the interval that contains the middle fifty percent of the values in an
ordered data set. The ordered data is broken into four roughly equal groups. The first quartile separates the
lowest valued quarter from the second quarter. The second quartile (the median) separates the second
quarter from the third quarter. The third quartile separates the third quarter from the last quarter. The inter-
quartile range is the difference between the end of the first quartile and the beginning of the third quartile,
which covers the middle fifty percent of the values in the data set.

A.5 PROBABILITY

A.5.1 Overview

Probability is the relative frequency of an outcome of a repeatable, observable experiment. Probability is
measured on a scale between 0 and 1. Probability is assigned to each outcome of an experiment based on its
relative frequency where 1 represents always and 0 represents never.
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A.5.2 Probability Distribution

A probability distribution is a mathematical formula that describes how the relative frequency of occurrence
is assigned to the real numbers in the range of a random variable. The distribution may be described by either
a density function p(x) or a cumulative probability function F(x). These functions are two different
presentations of the same data. In Figure A-3, the dark, curved line represents the statistical distribution
underlying the sample data shown in the table at the left. This type of curve is also called a Probability
Density Function (PDF).
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Figure A-3 Distribution Example

A.5.3 Probability Density Function (PDF)

A continuous PDF is the "smoothed out" version of a normalized histogram. The area under any PDF is
equal to 1. The area under a pdf for a specific interval identifies the probability associated with that interval.
A.5.4 Cumulative Distribution Function (CDF)

The CDF is a mathematical curve that identifies the probability that the actual value will be less than or equal
to the given value. When shown graphically, the CDF is an S-shaped curve. The term S-curve is used
synonymously with CDF. In mathematical terms, the definition of the cumulative distribution function of a
random variable X gives the probability of obtaining a value equal to or less than x. The value of X is also
called the x percentile.

Equation A-8 Cumulative Distribution Function (CDF)
P(X <x)= [ f(x)dx

The value of a cumulative distribution function is bounded between 0 and 1, with 0.5 indicating the median
of the population as illustrated in Figure A-4.
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Cumulative Probability Distribution
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Figure A-4 Cumulative Probability Distribution (CDF)

A.6 PROBABILITY DISTRIBUTIONS

A.6.1 Normal Distribution

The normal distribution is a continuous probability distribution, defined on the entire real line. It has a bell-
shaped probability density function, sometimes called a bell curve. A normal distribution is often used as a
first approximation to describe real-valued random variables that cluster around a single mean value.

The normal distribution probability density (PDF) function is also known as the Gaussian function or
informally as the bell curve. The PDF is given by:

Equation A-9 Normal Probability Density Function (PDF)

1 _l-f‘_E'
flepgi)=——s iic Y
o 21T
Where:

u is the mean
o’ is the variance.
o 1s known as the standard deviation.

On a non-truncated normal distribution the mean, median and mode are all the same. The distribution with
nw=0 and 6 = 1 is called the standard normal distribution or the unit normal distribution and is usually
denoted by Z. Figure A-5 compares Z with other normal distributions with various standard deviations.
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Probability density function
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Figure A-5 Normal Distribution Probability Density Function

The cumulative distribution function (CDF) describes probability of a random variable falling in the interval
[-o0, x]. The CDF of the standard normal distribution is denoted with the capital Greek letter ® (phi), and
can be computed as an integral of the probability density function:

Equation A-10 Normal Cumulative Distribution Function

1 - 1 x
VT - 2 (-q..fi) &

This integral cannot be expressed in terms of elementary functions, so is simply called a transformation of
the error function, or erf, a special function. For a generic normal random variable with mean y and variance
o” > 0 the CDF will be equal to:

Equation A-11 Generic Normal Cumulative Distribution Function

Pl prors)m P T}-E['l-f'irf(m}]; yak
where % 1s defined on the entire real line.
A.6.2 Student’s-t

The Student’s t-distribution (or simply the t-distribution) is a family of continuous probability distributions
that arises when estimating the mean of a normally distributed population in situations where the sample size
is small (less than 30) and population standard deviation is unknown.

Student's t-distribution has the probability density function given by:
Equation A-12 Student’s-t Probability Density Function

Where:

v is the number of degrees-of-freedom
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I' is the Gamma function.

In regression analysis, the degrees-of-freedom is number of sample points minus number of estimated
parameters. The student’s-t distribution, illustrated in Figure A-6, may also be written as:

Equation A-13 Student’s-t Probability Density Function Alternative Form

il
1 piy E
o= — _f%(u?]

where B is the beta function.
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Figure A-6 Student’s-t Probability Density Function

The cumulative distribution function can be written in terms of 7, the regularized incomplete beta function.

Equation A-14 Student’s-t Cumulative Distribution Function

P - [ foodum1 2 ho (o)

For¢t>0
with

&
W=

A.6.3 Lognormal Distribution

In probability theory, a lognormal distribution is a continuous probability distribution of a random variable
whose logarithm is normally distributed. If X is a random variable with a normal distribution, then ¥ =
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exp(X) has a lognormal distribution; likewise, if Y is lognormally distributed, then X = log(Y) has a normal
distribution. A random variable which is lognormally distributed takes on only positive real values.

The probability density function, illustrated in Figure A-7, of a lognormal distribution is:
Equation A-15 Lognormal Probability Density Function
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Figure A-7 Lognormal Probability Density Function
Equation A-16 Lognormal Cumulative Distribution Function

. 1 Inx— Inx— @
A o) e | B - 0 (B22),

Where:

erfc is the complementary error function
® is the cumulative distribution function of the standard normal distribution

Properties of the lognormal distribution in unit space can be calculated as follows:

Equation A-17 Lognormal Mean

fﬂ‘“’"i?
Equation A-18 Lognormal Median
gH
Equation A-19 Lognormal Mode
ok
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Equation A-20 Lognormal Variance

gius ol (g0 — 1)
A.6.4 Calculating Alternative Lognormal Parameters

Analysts (and tools) have preferred ways for defining a lognormal distribution. In this section, Table A-3,
Table A-4 and Table A-5 provide some common translations. In these tables, the “85% Bound” is the 85%
value divided by the median. This is provided to support those wishing to define the 85% bound as a percent
of the lognormal median which is a common assumption for the location of the point estimate within the
lognormal. Additionally, note Standard Error (SE) and Standard Error of the Estimate (SEE) have the same
meaning and are used interchangeably in these tables.

Table A-3 Calculate Lognormal Parameters Given Unit Space Mean and Std Dev

Unit Space Input Log Space Unit Space
WBS Element Mean Std Dev | Median Mean SEE |85% Value|85% Bound
CER Result 100.0000 | 35.0000 94.39 4.5474] 0.3399| 134.25 142.24%
Unit Space Mean From regression report
Unit Space Stdev From regression report

Unit Space Median |Exp(MeanLogSpace)

Log Space Mean LN(MeanUnitSpace)-SElogSpace”2/2

Log Space SE SQRT(LN(StdevUnitSpace”2/(MeanUnitSpace”2)+1))

85% of Median LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace

Table A-4 Calculate Lognormal Parameters Given Unit Space Median & Std Dev

Unit Space Input Log Space Unit Space
WBS Element Mean Std Dev | Median Mean SEE 85% Value |85% Bound
CER Result 100.0000 [ 35.0000 94.39 4.5474 0.3399] 134.25 142.24%

Unit Space Mean MedianUnitSpace*EXP((SElogSpace”2)/2)

Unit Space Stdev From regression report

Unit Space Median |From regression report

Log Space Mean LN(MedianUnitSpace)

Log Space SE SQRT(LN((1+SQRT(1+4*(SdevUnitSpace/MedianUnitSpace)"2))/2))
85% of Median LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace
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Table A-5 Calculate Lognormal Parameters Given Unit Space Median & Log Space SEE

Unit Space Input Log Space Unit Space
WBS Element Mean Sdev Median Mean SEE |85% Value]85% Bound
CER Result 100.0000 | 35.0000 94.39 4.5474| 0.3399 134.25 142.24%

Unit Space Mean

EXP(MeanLogSpace+SElogSpace”2/2)

Unit Space Stdev

((EXP(SElogSpace”2)-1)*MeanUnitSpace”2)"0.5

Unit Space Median

CER result

Log Space Mean

LN(MedianUnitSpace)

Log Space SE

From regression report

85% of Median

LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace

A.6.5 Log-t Distribution

This distribution is typically used to quantify the uncertainty for a point estimate obtained from a CER that
was created from a small sample set and the error term of the CER is assumed to follow a lognormal

distribution.

The log-t distribution is derived from a student’s-t distribution. If a random variable X follows a student’s-t
distribution with n degrees of freedom, then Y = exp(p + oX) has a log-t distribution with the location
parameter (W), the scale parameter (), and n degrees of freedom. The probability density function of Y is

given by the following formula:

Equation A-21 Log-t Probability Density Function

fory>0

The parameters for the log-t distribution are the (1) location parameter (p), (2) scale parameter (o), and (3)

Fo=
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degrees of freedom (n). Both the location and scale parameters are evaluated in log space.

The CDF of a log-t random variable Y (Y ~ log-t(u,o,n)) can be expressed as follows (in terms of its

probability density function):

Equation A-22 Log-t Cumulative Distribution Function

FieQ@)m P £ 'f-

Where:
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F1: denotes the CDF of log-t(u,o,n)

n is an integer

(1 (N = E0]?
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F; is the CDF of a t distribution with n degrees of freedom
LN stands for the natural logarithm.
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The mean of the log-t distribution does not exist because the right tail is too heavy. Other properties of the
log-t distribution in unit space can be calculated as follows:

Equation A-23 Log-t Mode

Mode = exp(,u —0.5%((n+1)— \/(n +1)> —4no?’ ))

A.6.6 Triangular Distribution

The triangular distribution is a continuous probability distribution with lower limit a, upper limit b and mode
c, where a <b and a < ¢ <b. The probability density function, illustrated in Figure A-8, is given by:

Equation A-24 Triangular Probability Density Function

[} Forx < @
Mfﬂ‘ﬁﬂ#‘ﬂ €
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whose cases avoid division by zero if c =a or ¢ =b.

N
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Figure A-8 Triangular Probability Density Function

The cumulative distribution function is given by:

Equation A-25 Triangular Cumulative Distribution Function

0 Forx < @
LS
qu‘ﬂ:[{'?-_ﬂi Forad x4 o
1 (@ = x)"
~moan oD fresash
1 ford = %

Properties of the triangular distribution can be calculated as follows:
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Equation A-26 Triangular Mean
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g
Equation A-27 Triangular Median
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Equation A-28 Triangular Variance
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A.6.7 Beta Distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions
defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by o and B, that
appear as exponents of the random variable and control the shape of the distribution. The beta distribution
has been applied to model the behavior of random variables limited to intervals of finite length in a wide

variety of disciplines

The probability density function of the beta distribution, for 0 <x < 1, and shape parameters o> 0 and § > 0,
illustrated in Figure A-9, is a power function of the variable x and of its reflection (1—x) as follows:

Equation A-29 Beta Probability Density Function

re-+(1 — :J-:}E"'
B(e. £

The beta function, B, appears as a normalization constant to ensure that the total probability integrates to

unity.

02 [ -I J.E 0.

Figure A-9 Beta Probability Density Function
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The cumulative distribution function is given by:

Equation A-30 Beta Cumulative Distribution Function

Blxie )

PP =B

= I e 52

where EGren £ is the incomplete beta function and I (% £} is the regularized incomplete beta function. The
regularized incomplete beta function is the cumulative distribution function of the beta distribution.

Properties of the general beta distribution where the minimum and maximum can be any value (rather than
assumed to be 0 and 1) can be calculated as follows:

Equation A-31 Beta Mean

(h=ala
HErH

where a=minimum value and b=maximum value
Equation A-32 Beta Variance

(B — a)* af
@+ BEE+i+1)

A.6.8 BetaPert Distribution

The betaPERT distribution is a variation of the beta distribution, but only requires three parameters:
minimum, most-likely and maximum. The fourth parameter can be determined by assuming a relationship
between the mode and the minimum and maximum. The most common assumption, used by all popular
simulation tools is that the mode is weighted four times as much as the minimum or maximum. With that

assumption in mind, & and B of the beta distribution can be calculated as follows (see Reference 56):

Equation A-33 BetaPERT Calculating Alpha and Beta for the Beta Distribution

o=1+4€=9
(b—a)

B (b-c)
ﬂ_1+4(b—a)

Where a= min, b= max and ¢ = the mode
Properties of the betapert can be calculated as follows:
Equation A-34 BetaPert Mean
@+ 4c-+b)
—

For a and b > 1, the mode can be found as follows:
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Equation A-35 BetaPert Mode

(b = @l = 1)
e =2

Equation A-36 BetaPert Variance
EHERE)

A.6.9 Uniform Distribution

The continuous uniform distribution or rectangular distribution is a family of probability distributions such
that every value is equally probable. Defined by the two parameters, a and b, which are its minimum and
maximum values, the distribution is often abbreviated U(a,b).

The probability density function is given by

Equation A-37 Uniform Probability Density Function
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The cumulative distribution function is given by:

Equation A-38 Uniform Cumulative Distribution Function
E 0 forx« g

K=
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7%  ferxmd

The uniform distribution does not have a mode. Other properties for the uniform distribution can be
calculated as follows:

Equation A-39 Uniform Mean

1
2(a +4)
Equation A-40 Uniform Median
1
20+ 1)
Equation A-41 Uniform Variance
LR

A.7 REGRESSION METHODS

Regression analysis is a statistical technique used to find relationships between variables for the purpose of
predicting future values. In cost estimating, regression analysis is used to develop cost estimating
relationships (CERs) between a dependent variable (cost) and one or more independent variables (cost
drivers such as weight, power, volume, etc.) from completed project data. By a statistical relationship it is
meant that the observed variation of the dependent variable (cost) across similar projects can be explained or
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predicted by one or more independent variables (technical, performance, programmatic, etc.). The objective
is to find the functional relationship that most accurately estimates the cost of a particular element in a
project work breakdown structure. Additionally, the regression method should yield an objective assessment
of the predictive capability of the CER. This assessment provides an objective basis for characterizing the
uncertainty of the CER itself.

There are various techniques available to perform regression analysis. In order to correctly assign the
appropriate uncertainty distribution to a given CER, the analyst needs to know how the CER was generated.
The objective uncertainty distribution is a function of the method employed. Several of the most popular
methods are described in the following sections along with guidance on how to capture their uncertainty in a
simulation-based cost risk and uncertainty model.

A.7.1 Ordinary Least Squares (OLS)

Ordinary least squares is one of the most popular methods to employ because it is easy, the theory is well
known, the CERs tend to be easy to understand and it yields meaningful descriptive statistics to characterize
its significance and predictive power. It is a mathematical optimization technique used to find a "best linear
fit" to a set of data. The object is to minimize the sum of the squared errors (SSE) which is the sum of the
squared difference between the fitted line (i.e. the predicted values of the CER) and the source data for each
data point. The goal of the OLS method is to find the linear equation such that the sum of all the squared
deviations is as small as possible. Expressed mathematically, the best-fitting line is derived by solving for
the coefficients (i.e., Bo, B1, --., Px) in the following equation such that SSE is minimized:

Equation A-42 Ordinary Least Squares

Y=06,+BX +B,X,+..4+ B X, +& where ¢is a random error term

Minimize SSE=Y (Y, -Y,)

i=1

where: n = the total number of data points in the sample
Y, = the i" observed value of the dependent variable (i.e., cost)
Y = the {" estimated value

1

In the context of cost estimating, Y is generally cost, man-hours or some other effort or resource. X is
generally some technical or performance characteristic or metric that helps to explain the variation in cost
across a number of projects. More than one X parameter might be found to be statistically significant in
explaining cost variation.

A.7.2 Log-Error SEE

If the regression model is fit in log space, the SEE measure is given by
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Equation A-43 Standard Error of the Estimate for a Log Error

SEE = (Xn‘,[ln(Y,-)—ln(ﬁ-)]z /(n—p)j |

= SSE / dfe
= JMSE

The Log-Error SEE is not stated with the units (e.g. dollars) of Y.

A.7.3 Other Multiplicative Error Term Regression Techniques

Multiplicative error terms are preferred in the cost analysis field because experience tells us that the error of
an individual observation (e.g., cost) is generally proportional to the magnitude of the observation (not a
constant). The general specification for a CER with a multiplicative error is stated as:

Equation A-44 Multiplicative Error Term CER Specification
Y =f(x;,B)e;, fori=1,...,n
where:
n = sample size
Y; = observed cost of the i data point, i = 1 to n

X;,B) = the value of the hypothesized equation at the i" data point
yp q p

B = vector of coefficients to be estimated by the regression equation
X; = vector of cost driver variables at the i data point
& = error term with mean of 1 and variance o *

Minimization algorithms can be explored for modeling CERs with multiplicative errors based upon a
generalized error term definition:

Equation A-45 Generalized Error Term

o = v — f(x;,B)

i
J(x;,B)
where e, is normally distributed with a mean of 0 and variance o ° .

This error term expresses the error of estimation as a percentage of the estimate. The percentage error
represents the percent error of the residual about the regression function and the optimization objective is to
find the coefficient vector B that minimizes the sum of squared e;s.

A.7.4 Minimum Unbiased Percentage Error (MUPE) Method

A refinement to Minimum Percentage Error (MPE) was proposed in Reference 15 and 24 to solve for the
function in the numerator separately from the function in the denominator through an iterative technique.

Equation A-46 MUPE Minimization Formulation

2 2
S arAC ) _ Sy = fie(x))
iZ=1: ( S Biy) J ZZ=1: ( Sia(x;) J
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where £ is the iteration number and the other terms are as defined previously.

This optimization technique is called the Minimum-Unbiased-Percentage Error (MUPE) method; it is also
referred to as Iteratively Reweighted Least Squares (IRLS). As shown in the equation above, the weighting
factor of each residual in the current iteration is equal to the reciprocal of the predicted value from the
previous iteration. The final solution is derived when the change in the estimated coefficients (B vector)
between the current iteration and the last iteration is within the analyst-specified tolerance limit. No
transformation or adjustment (to correct the bias in unit space) is needed to fit a MUPE CER. Goodness-of-
fit measures (or asymptotic goodness-of-fit measures) can be applied to judge the quality of the model under
the “normality” assumption (i.e., & ~ N(1,6%)). The MUPE CER has no "positive" sample bias; it has zero
proportional error for all points in the database. It is an unbiased estimator of the model mean if the function
is linear. Also, it produces consistent estimates of the parameters.

A.7.5 ZPB/MPE Method (or ZMPE Method)

There is another alternative method (see Reference 10, 18, 45, 85) to reduce the positive bias for MPE CERs
and yet maintain the same objective function. Mathematically, it is stated as follows:

Equation A-47 ZMPE Minimization Function

2
&y —f(x;,B) :n 2
21[ 7(x,.B) j L

iei=0

Subject to i=!

This alternative method is called the “Constrained Minimum Percent Error” solution. It is also referred to as
the MPE method under the Zero-Percentage Bias constraint, i.e., the ZPB/MPE or ZMPE method by Book
and Lao, 1997 (see Reference 18).

A.7.6 Iterative Regression Techniques

The Gauss—Newton algorithm is a method used to solve non-linear least squares problems. It has been
observed to have convergence problems on many datasets. For this reason there has been considerable
interest in other methods. There are several different non-linear optimization techniques that might be used
to fit non-linear functional forms to data. Well known techniques include Quasi-Newton, Conjugate
Gradient, Downhill Simplex, and Marquart’s methods. Non-linear regression techniques do not typically
result in the normal types of statistics expected when performing OLS or MUPE. For example, rather than
reporting traditional t-statistics, a non-linear regression will report approximate prediction ranges for each
coefficient.

A.7.7 Error Term Summary

Regardless what method is used to generate the CER, it is very important that the user of the CER is aware
of the CER result meaning and how the error should be modeled. Generally, lognormal distributions should
be used as a default approach. If normal distributions for cost or effort are selected, they should be supported
by appropriate supporting evidence.

For relatively small data sets, all CER best fit methods tend to underestimate the level of underlying
dispersion (as measured by the standard error) in the population as a whole. The result is a regression
equation that is likely to be substantially different from the underlying relationships between the cost and its
driver variables and (on the average) an underestimate of dispersion. Although there is a statistical bias
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(underestimating the underlying dispersion), in any given case, the CER dispersion can also be greater than
the underlying dispersion.

The best way to assess the likelihood of an abnormally low (or high) SE is by comparing many CERs for
similar products. Specifically, if the CERs have different size data sets (and degrees of freedom), the SE
value for each CER should be plotted against its degrees of freedom (DF). CERs with low DF that are far
away from the average should be used carefully. If they represent costly products and hence play a
significant role in determining the overall system cost variance, then remedial action may be appropriate in
the form of subjective, expert opinion increases (or decreases) to the CER SE.

A.8 ESTIMATING REGRESSION METHOD ACCURACY

A.8.1 The Use of Student’s-t and Log-t Distributions
There are two types of error terms for a CER, additive or multiplicative, and they are given by:
Equation A-48 Additive Error Term
Y =1(x)+¢
Equation A-49 Multiplicative Error Term
Y = f(x)*e

For an additive error term, the student’s-t is an appropriate error distribution while the log-t is appropriate for
the multiplicative error term when less than 30 data points are available. In either case, three parameters are
required to fully define the distribution. Available parameters in ACE and Crystal Ball for the student’s-t
include:

e Two points on the curve (such as low, high, median) along with their associated percentiles
e Degrees of freedom
e Scale, populated by the adjusted SEE.

Note: you can either specify two points on the curve or the scale parameter of the distribution, but you must
enter the degrees of freedom, which is a required input. Although the uncertainty distribution for an
additive-error model is generally assumed to be normal (as in OLS), the student’s t distribution is chosen to
adjust for the degrees of freedom for small samples. When the sample size n is sufficiently large, say n > 50,
you can select normal distribution instead. Here, the PE is assumed to be the mean of the normal distribution,
which is the same as the median for a student’s t distribution.

@Risk is somewhat different. It only requires the degrees of freedom because it models the standardized
student’s-t distribution of which the median is 0 and the variance is given by the following formula:

Equation A-50 Calculate Student-t Variance Given the Degrees of Freedom and Median of Zero
v

V=2

For degrees of freedom v > 2

It is necessary to scale the @Risk distribution based on the parameters of your random variable. To scale the
@Risk result, multiply one of the following equations:

Equation A-51 Formula to Scale the Standardized Student’s-t Given a Value Above the Median
High—Median  High — Median
" (p,df) TINV (2*(1= p).df)

Scale =
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Equation A-52 Formula to Scale the Standardized Student’s-t Given a Value Below the Median

Low—Median _ Low—Median _ Median — Low
1™ (p.df) —TINV (2* p,df) TINV(2* p,df)

Scale =

where:

t'(p,df) (commonly denoted by ti4f) is the (100p)™ percentile of the student’s-t distribution
with mean of zero, scale 1, and a specific degrees of freedom (denoted by df)

TINV is an Excel function, which calculates the inverse of a cumulative t distribution at a
specified probability level (see the help of the TINV function in Excel for details)

p is used to denote the probability level of the given percentile

For the multiplicative error term, it is common to assume it follows a lognormal distribution, especially when
f(x) = a*x”b (i.e., an OLS log-linear CER). The Log-T distribution is used to capture the effect of low
degrees of freedom. When the sample size is sufficiently large (>30), the lognormal is appropriate.

For a MUPE CER select a student’s-t distribution when the CER’s SPE measure is moderately tight (say <
0.4 or 0.5).

A.8.2 Additive Error SEE

For CERs with additive error terms (for example, linear OLS), the standard deviation of the dependent
variable (Y) is assumed to be the same across the entire range of the data, regardless of the value of the
independent variables. Mathematically, it is equal to the square root of the mean squared error (MSE). If the
regression model is fit in unit space, the SEE measure is given by:

Equation A-53 Standard Error of the Estimate
. 0.5
SEE = (Z(K -7,)° /(n—p>j
i=1

= [ SSE/ dfe
= JMSE

Where dfe is the number of degrees of freedom of the sum of squares error (SSE). Dfe is the number of
observations (n) minus the total number of estimated coefficients in the equation (p). The SEE measure is
typically stated in absolute terms (i.e., if Y is in dollars then the SEE is in dollars as well).

A.8.3 Defining a Prediction Interval From SEE

A proper measure of the quality of the regression estimate for a future observation is the Prediction Interval.
The prediction interval accounts for the sample size and the location of the estimate within the data used to
create the regression. The further from the center of the regression data, the greater the uncertainty. SEE is
an average measure. The prediction interval adjusts the SEE to account for location.

The regression equation estimates a value based upon the independent variable(s) for the project in question.
But the point estimate is almost surely not exactly right. A prediction interval provides a range of values in
which the actual value can be expected to fall with a certain degree of confidence. For example, “There is a
90% probability that the warhead cost will be between $48K and $64K.” A prediction interval of a
parametric CER is calculated from the:

e standard error of the CER
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e CER sample size (i.e., the number of data points used to derive the CER)

e (desired confidence level

e distance from the center of the CER’s independent variables to the location of the independent

variable of the point being estimated

A prediction interval can be thought of as a range defined by the point estimate plus or minus some number
of adjusted standard errors (standard errors adjusted for prediction). This adjusted standard error is a
function of the standard error of the regression, the size of the database used in the CER development, and
the “distance” of the estimating point from the center of the database as exemplified by the means of all the
independent (driver) variables. In the simple case of one independent variable [X], the adjusted standard

error is specifically defined by the following:
Equation A-54 Adjusted Standard Error

2
(Xe-i}
S
Adj. SE = SE * PR SV

n n
Where:
Adj. SE =  adjusted standard error for prediction interval
SE =  standard error (data must be normalized for base year, adjustments, quantity)
Xe = the value of the independent variable used in calculating the estimate
x = the mean of the independent variable in database
Sx = uncorrected sample standard deviation of the independent variable
n = the number of data points

In a simple linear CER where Y = 3¢ + ;X + €, a 95% prediction interval when X = x, is given by
Equation A-55 Linear CER 95% Prediction Interval

A - 1 (xo_)_c)2
Yo Tlopasna) ~ S€ 1+;+T

xx

Where:
88, =Y (x,—x)*
i=1

Yo is the estimated cost from the CER when X = xo0

t0.025,m-2) 18 the upper 2.5% cut-off point of student’s-t distribution with (n-2) degrees of freedom.

As one moves away from the mean of the CER dataset, the adjusted standard error is always greater than
the SEE. Thus, using the SEE as a quantifier for uncertainty underestimates the true error unless the point of
interest is at the mean of the data. For estimating points not near the dataset mean, the difference can be
significant. This is especially true when the CER is used beyond the range of the data used in developing the

CER.
If a simple linear CER is fit in log space, assuming the multiplicative error term:
Equation A-56 Linear CER Fit in Log Space

Yi = (BoXi) &

fori=1,....,n
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The (1-00)100% prediction interval (PI) for a future observation Y, when X = x, is given by

Equation A-57 Prediction Interval for a Linear CER Fit in Log Space

Exp[ﬁo + (za/z,n_z)SE\/ 1+ L ENG@) - LNG)

n SS

XX

= EXP(JA’O t(t,0,0)*(Ad). SE))

where:
Yo = the estimated value in log space when X = xo,
X0 = the value of the independent variable used in calculating the estimate
LN(x) = the average value of the independent variable evaluated in log space,
SE = the standard error of estimate in log space
Adj. SE = the adjusted standard error for PI in log space
SSyx = the sum of squares of the independent variable about its mean (in log space)
“LN” = the natural logarithm function

The above PI equations can be extended to CERs with multiple drivers. For example, if there are several
predictors in a linear CER, namely, Y = Bo + B1X; + B2X2 + ... BcXk + €, the PI can be computed using
matrix operations. A (1-a)100% PI for a future observation Y at a given driver vector X, is then given below:

Equation A-58 Prediction Interval For CERs with Multiple Independent Variables

~

Po £ty ) *SE* 14 (x )X X) " (x,) = Py £(t,0.,-,) * (Ad].SE)

where:
Yo = the estimated value of Y from the CER when x = x,
Xo = (1, Xjo, ..., Xko), @ TOW vector of given driver values and 1 is for the intercept
p = the total number of estimated parameters, including the intercept (p = k+1)
n = the number of data points
twonp = the upper o/2 cut-off point of student’s-t distribution with (n-p) DF
SE = CER’s standard error of estimate
Adj. SE = the adjusted standard error for PI
X = the design matrix of the independent variables

(The apostrophe superscript denotes the transpose of a vector or a matrix.)

If not all statistics of the CER are available, the Adjusted Standard Error can be calculated with the following
equation based on a distance assessment of the primary independent variable.

Equation A-59 Simplified Adjusted Standard Error

( distance Jz
le std
Adj. SE = SE *|[1 4 -4 2597P€S

n n

where:

distance = distance between the point estimate independent variable value and the center of the
independent variable data used to generate the CER
sample std = uncorrected sample standard deviation of the primary independent variable
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Note that this distance assessment need only be characterized in terms of a number of standard deviations
from the center. For example, if the distance is assessed as approximately 2 sample standard deviations of
the driver variable, then the ratio (of “distance” to “sample std”’) becomes 2. For simplicity, the following
default values address the assessment of this ratio based upon the similarities between the systems:

0.25 Very Similar
distance 0.75 Similar
m ~]1.50 Somewhat Different
3.00 Very Different

For example, if the system being estimated is deemed very similar to the database from which the CER was
developed, this qualitative assessment might translate into a quantitative assessment of the ratio with a value
of 0.25. Similarly, if the system being estimated is deemed very different from the database from which the
CER was developed, this qualitative assessment might translate into a quantitative assessment of the ratio
with a value of 3.0. Using these default values the adjusted standard error can then be calculated.

In addition, if no statistical information is available, then the Adjusted Standard Error can be chosen
subjectively based on a subjective distance assessment of the primary independent variable and the relative
sample size. Table A-6 provides a list of multipliers that can be used to estimate the Adjusted SE.

Table A-6 Standard Error Adjustment Factors

SE Number of Data Points in Sample
Multiplier 5 10 15 20 75 30
0.00 [1.095 | 1.049 [1.033 [1.025 [1.020 [ 1.017 [Very Similar |
025 | 1101 |1 1.052 | 1.035 [ 1.026 | 1.021 [ 1.018
050 11118 | 1.061 | 1.041 {1.031 | 1.025 | 1.0
0.75 | 1.146 | 1.075 | 1.057 [ 1.038 | 1.031 | 1.026 | Similar |
1.00 | 1.183 | 1.095 | 1.065 | 1.049 | 1.039 | 1.033
1.25 | 1.230 11121 | 1.082 [ 1.062 | 1.050 | 1.042
1.50 | 1.285 11.151 | 1.103 [ 1.0¢78 | 1.063 [ 1.053 |Dissimilar |
1.75 | 1.346 | 1.186 | 1127 [ 1.097 | 1.078 | 1.066
200 1414 11.226 11185 [ 1.118 | 1.095 | 1.030
2.25 | 1,487 | 1.267 | 1.185 [ 1.142 | 1.115 | 1.096 |Different |
250 11565 11,313 | 1.218 [ 1167 | 1.136 [ 1.114
2075|1647 | 1.362 | 1.263 [ 1.195 1,159 [ 1.134
3.00 | 1.732 [ 1.414 | 1.291 [ 1.2265 | 1.183 | 1.155 [Wery Diﬁerentl

Distance [ StdDev
for Independent Variable

Figure A-10 illustrates the use of the standard error adjustment factor. The correct prediction interval high
value is calculated to be (A) 123.01% of the point estimate at the 90% interpretation. (For guidance on how
to calculate a prediction interval, see Appendix A.8.5 and A.8.8). This is compared with the lognormal
based upon the reported SEE in log space (B) 0.1413. The regression SEE underestimates the standard
deviation (C) and 95th percentile (D). If, however, the SEE multiplied by the adjustment 1.267, which is
consistent with 10 data points and an assessment that the source data is “different” for the project to be
estimated, the adjusted SEE is 0.1790 (E) and the results are more conservative than those obtained using
SEE alone. The adjustment factor approach tends to over compensate, but is a reasonable, conservative and
simple approach when statistical tools and/or source data is unavailable for a more precise estimate.
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Alternative Ways to Define the Lognormal Distribution

P : High
WBS/CES Description | BASELINE | Equation / Throughput | DiStribution | s g | Hishorf o
Form High % .
. etation
Propulsion Calculated P | 60,915 (50%) %  1.618 * Motorw!t * 06848 LogMormal 123.01 90
Propulsion SE Log Space | 60.915(50%)* 1.618 " Motor'w't ™ 0.6848 LogNormal 01413 B
Propulsion Adjusted SE Log Space | B0.915(50%)*  1.618 * Motorw't * 0.6348 LogMormal 0.1790 E
Alternatiye Results
D
Point |£| 50% | 25.0% | 50.0% @75.0% SQA’:
BSCES Estimate Mean R iSId DoV Gy Level Level = Level Level Level
Propulsion Calculated Pl 6091 (50%) 61.72 10.04 016 4670 5463 6092 6793 7946
Propulsion SE Log Space 60.91 (50%) 61.53 8.74 014 4828 5538 6091 67.01 7686

Propulsion Adjusted SE Log Space | B0.91 (50%) 6190 11.17 018 4538 5393 6092 6873 8177

Figure A-10 Compare Calculated Prediction Interval with Estimated Approach

A.8.4 OLS Unit Space Interpretation and Error

The result of a linear OLS derived CER is interpreted to be the mean of a normal distribution (that is, the
error is assumed to be normally distributed about the CER line). Since a normal distribution is symmetrical,
the CER result can also be characterized as the median or the mode.

In OLS, the cost (Y) variation is assumed to be independent of the magnitude of the cost. In other words, the
error distribution is assumed to identical throughout the data range and the error term is additive to the
equation. It is given by

Equation A-60 OLS Error Distribution
gi = Yl _f(xialj)

This may be mathematically correct, but it is not reasonable in cost estimating and is a big reason why many
analysts will not use the OLS method. For instance, if the CER predicts cost as a function of weight and the
valid cost range is $500 to $1500, a fixed $100 (a result consistent with OLS) average error over that range is
not appropriate. It may be reasonable at the mid-range of the cost, but not at the low or high end. In cost
estimating, it may generally be assumed that the error is proportional rather than fixed. In this case, an
average error of 10% (rather than $100) would be used by most analysts to model the error of the CER. A
common rule of thumb is that the errors are believed to be proportional to the magnitude of the result (the
dependent variable) if it ranges over more than one order of magnitude. It is appropriate in such a case to
assume the percentage errors of the item estimates will be identically distributed throughout the range of the
data set. This is what a multiplicative error is supposed to represent.

The uncertainty of a linear OLS derived CER may be modeled as a normal distribution where the CER result
is always the mean of the distribution. If the dataset is small (less than 30), then the student’s-t distribution
should be used rather than the normal distribution.

A.8.5 Calculating the Prediction Interval for Linear OLS CERs

If the CER has the form: a + b*Varl + c*Var2 + etc and it was derived using OLS, then it is acceptable to
assume the CER produces the mean and the uncertainty distribution shape is the student t or normal. To
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estimate the bounds of the distribution, calculate the prediction interval based upon the point estimate value
for the input variables.

Many statistical packages will calculate a lower and upper bound for the OLS generated CER based upon a
specified value for the independent variable(s). As illustrated in Table A-7, entering 25 Ibs as the value for
the point estimate weight and choosing to calculate the 80% prediction interval, the statistical package
calculates the upper and lower bound. In this case, these bounds are associated with the 10 and 90 percent
probability levels.

Table A-7 Statistic Package Prediction Interval for a Linear OLS CER

UC1 = 30.15 + 1.049 * WarheadWt
WarheadWt 25.00
Confidence Lewel (%) 80.00%

Statistical Tool Result |PE Multiplier
Low (10 percentile) 48.61 0.8624
Estimate (mean, median) 56.36 1.0000
High (90 percentile) 64.12 1.1376

If the statistical package is unavailable, you can perform the prediction interval calculation manually as
illustrated in Table A-8.

Table A-8 Manual Calculation of Prediction Interval For A Linear OLS CER

) Warhead
Observations uci Wt
System #1 31.00 6.00]
System #2 46.00 8.00)
System #3 36.00 9.00|
System #4 48.00 13.00]
System #5 40.00 14.00|
System #6 50.00 17.00)
System #7 55.00 20.00]
System #8 54.00 27.00|
System #9 58.00 30.00]
System #10 67.00 31.00]
Element Range Name | Value |Formula
Confidence Level (%) ConfLM|  80% Arbitrary, but 80% is consistent with calculating the 10/90 bounds.
Degrees of Freedom | DegOfFreedom 8 Number of observations minus number of coefficients estimated.
Student t StudentT] 1.397 | TINV(1-ConfLu,DegOfFreedom)
Std Error (SE) StdErr 5.126 | See Appendix
# of Observations NumObs 10
TBE Warhead Wgt TBEwgt 25.00 | User Input
Ave Warhead Wgt AveWgt 17.50 | AVERAGE(WarheadWtObservations)
Warhead Wgt Stdev Sx 8.73 | STDEVP(WarheadWtObservations)
Delta to Bound Delta] 7.76 | StdErr*StudentT*SQRT(1+1/NumObs+((TBEwgt-AveWgt)/Sx)"2/NumObs)
Lower Bound 48.61 | TBE-Delta
Point Estimate TBE 56.36 | UC1 = 30.15 + 1.049 * WarheadWt
Upper Bound 64.12 | TBE+Delta

If the statistical package and/or the data to perform the calculation manually are unavailable, the analyst may
estimate the bounds based upon the CER result, the Standard Error for the CER and an adjustment factor
from Table A-6. This simple procedure is illustrated in Table A-9. As the results for the bounds show in
Table A-9, the estimate without the adjustment underestimates the prediction interval range while the result
that includes the adjustment slightly over estimates the range. It is appropriate that a less accurate approach
(using an adjustment factor) tends to overestimate the uncertainty.
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Table A-9 Manual ROM Estimate of a Prediction Interval for a Linear OLS CER

No With
Element Range Name Adjustment | Adjustment Formula
Standard Error SEE 5.126 5.126(From Statistical Package
Adjust for Sample Size & Relevance|SEEAdjust 1.000 1.267|10 datapoints, source data different than project
Adjusted Standard Error SEEUnitSPace 5.126 6.495|SEE * SEEAdjust
Mean Mean 56.364 56.364
Lower Bound (10% level) 49.79 48.04|NORMINV(0.10,Mean,SEEUnitSpace)
Upper Bound (90% lewel) 62.93 64.69|NORMINV(0.90,Mean,SEEUnitSpace)
Lower Bound as % of PE 88.34% 85.23%|Actual = 86.24
Upper Bound as % of PE 111.66% 114.77%|Actual = 113.76

If information about the CER is so sparse that even the standard error is unavailable then the analyst must
resort to a subjective assessment of the CER uncertainty bounds. The table of last resort subjective
uncertainties (see Section 2.5.5) are considerably larger than the examples in this section.

All simulation packages will allow a normal distribution to be defined with the mean and some other
probability level. Since the normal is symmetrical, only one of the bounds plus the mean (the CER result) is
required

A.8.6 OLS Log Space Interpretation and Error

CERs of the form Cost = a*Varl”“b*Var2”c...*c can be transformed into linear forms in log space. In unit
space, the CER result is closer to the median (not the mean) of a lognormal distribution. A key result of this
approach is that the error term is multiplicative, that is, it is proportional to the result of the CER. A log-
error model is used when the error term is believed to follow a lognormal distribution. This is a very
common and intuitive assumption because the error in cost is usually skewed upward and bounded below by
zero. Log-linear models are in a very common and distinct class of non-linear relationships that are rendered
linear when transformed to log-space.

If the error term (&) is assumed to follow a normal distribution with a mean of 0 and variance ¢ in log space
(i.e., & ~ LN(0,67%)), then the error can be measured by the following:

Equation A-61 Log Space OLS Error Distribution
In(¢,) = In(¥)) - In(f (x;,B))

where “In” stands for natural logarithmic function. The objective is then to minimize the sum of squared e;s
(i.e., (2(In(g))) in log space. In this case, the errors are assumed to be normally distributed around the CER
(a straight line) in log space. When transformed back to unit space, the mathematics show that:

The unit space CER error term follows a lognormal distribution

The CER result, while being the mean of a normal distribution in log space, is closer to the median in unit
space. If adjusting the CER result to be closer to the mean of the lognormal distribution is desired, please
see the Appendix A.8.7.

In summary, if the transformed function is linear in log space, then OLS can be applied in log space to derive
a solution for B. If this function cannot be linearized in log space, then apply a non-linear regression
technique to derive a solution. See the pros and cons of log-error models in Reference 39.

A.8.7 Adjusting a Log Space OLS CER Result to reflect the Unit Space Mean

Although a least squares optimization in log space produces an unbiased estimate in log space, the estimate
is no longer unbiased when transformed back to unit space (see Reference 1). By unbiased, we mean the
result is the mean of the uncertainty distribution. The unit space CER by direct translation tends to
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underestimate the mean value of the original population. Two distinct methods for adjusting the OLS log-
linear CER result to reflect the mean are presented. As stated in Reference 15, neither of these adjustments
is necessary to model the lognormal uncertainty.

The most accurate approach is to make use of a correction factor based upon statistics of the CER. A
theoretical correction factor was first introduced by Neyman and Scott in 1960 and again by Goldberger in
1968 to adjust the CER result to reflect the mean in unit space for the log-linear CERs (see Reference 1 and
3). A simplified form, commonly known as the PING factor (PF) is given by:

Equation A-62 Factor to Adjust a Log Space CER Result to Reflect the Mean
2
PF =exp(1-2)> )
n 2

Where:

p = the total number of coefficients to be estimated
s = standard error of estimate in log space
n = the sample size

This simplified form can be applied to log-linear CERs to correct the downward bias in unit space. For a
more accurate form of the factor and its detailed derivations, see Reference 39.

By way of an example, consider the following CER to estimate propulsion costs:
Y($K) = 1.618*MotorWt"0.6848

Where

n =10 and SE = 0.25 and two coefficients (the intercept 1.618 and exponent 0.6848)

the factor is:

2 0257
exp((1 - =) =22
xp(( 10) 5 )

=1.025

If, for example, the motor weight is 200 Ibs, the CER yields $60.91 K. This is the median of the lognormal
distribution. If the mean is desired, then the CER result must be multiplied by 1.025. The mean of the
lognormal is therefore approximately $62.43 K.

As indicated by Equation A-62, there are two terms involved in the adjustment: the first one is for adjusting
the downward bias between the mean and the median (a transformation bias); the other is used to adjust the
upward bias for estimating the median (a sampling bias). It can be concluded that:

e Ata given sample size, the adjustment increases with standard error.
e At a given standard error, the adjustment increases with the sample size.
e The adjustment is always greater than 1 for p <n and standard error > 0.

Table A-10 provides typical ranges for PING values illustrating that the adjustment increases with greater
dispersion or larger sample size and decreases with more CER coefficients.
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Table A-10 Typical Log Space CER Adjustment Factor Ranges To Obtain the Mean

Factor to Convert Loglinear CER Median to Mean
2 Coefficient Loglinear CER 3 Coefficient Loglinear CER 4 Coefficient Loglinear CER

Dispersion -->| Low | Med | High |EHigh| Low | Med | High [EHigh] Low | Med | High |E High
(Adjusted SE) -->| (0.15) | (0.25) | (0.35) | (0.45) | (0.15) | (0.25) | (0.35) | (0.45) | (0.15) | (0.25) | (0.35) | (0.45)

Small Sample (5) 1.007 | 1.019 | 1.037 | 1.063 | 1.005 | 1.013 | 1.025 | 1.041 | 1.002 | 1.006 | 1.012 | 1.020
Medium Sample (10) [ 1.009 | 1.025 | 1.050 | 1.092 | 1.008 | 1.022 | 1.044 | 1.084 | 1.007 | 1.019 | 1.037 | 1.077
Large Sample (25) 1.010 | 1.029 | 1.058 | 1.098 | 1.010 | 1.028 | 1.055 | 1.093 | 1.009 | 1.027 | 1.053 | 1.089

A.8.8 Calculating the Prediction Interval for Log Linear OLS CERs

A very common mistake is to assume OLS log-linear CERs produce the “mean” of the uncertainty
distribution. This is not true. The back-transformed unit-space CER produces a value that is closer to the
median. The mathematics involved in adjusting the result to reflect the mean, while not complicated, does
add a further layer of unnecessary calculations. The details of how to calculate this adjustment are contained
in Appendix A.8.7. However, this is not necessary to accurately define the distribution. A lognormal
distribution based upon the median and one other point will be identical to one modeled based upon the
mean of the same distribution and one other point. The simulation result will be identical.

If the CER has the form: a*Varl”b * Var2”c * € and was derived using OLS in log space (see Appendix
A.7.2 for details), then the CER produces the median and the uncertainty distribution shape is lognormal. To
estimate the bounds of the lognormal distribution, calculate the prediction interval based upon the point
estimate for the input variables.

Many statistical packages will calculate a lower and upper bound for the OLS generated CER based upon a
specified value for the independent variable(s). As illustrated in Table A-11, entering 290 lbs as the value
for the point estimate and choosing 80%, the statistical package calculates the upper and lower bound. In
this case, these bounds are associated with the 10 and 90 percent probability levels.

Table A-11 Statistic Package Prediction Interval For A Log Linear OLS CER

UC1 = 1.618 * MotorWt ~ 0.6848
Motorwt 290.00
Confidence Lewel 80.00%

Statisitcal Tool Result PE Multiplier
Lower Bound 63.31 80.58%
Estimate 78.56 Median
Upper Bound 97.48 124.08%

To perform this calculation manually in Excel, follow the steps in Table A-12. Note that the assessment of
fit occurs in fit space, in this case log space. Consequently, the CER result and the 10/90 results from fit
space need to be converted to unit space using the exponential function.
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Table A-12 Manual Calculation of Prediction Interval for a Log Linear OLS CER

LN(Motorwt) Motorwt
System #1 4.499809670 90
System #2 4.718498871 112
System #3 4.867534450 130
System #4 5.135798437 170
System #5 5.272999559 195
System #6 5.347107531 210
System #7 5.416100402 225
System #8 5.669880923 290
System #9 5.768320996 320
System #10 5.828945618 340
Element Range Name Value |Formula
Confidence Lewel (%) ConflLv 80% Arbitrary, but 80% is consistent with calculating the 10/90 bounds.
Degrees of Freedom | DegOfFreedom 8 Number of obsenations minus number of coefficients estimated.
Student t StudentT 1.397 | TINV(1-ConfLM,DegOfFreedom)
Std Error (SE) StdErr 0.1413 | See Appendix A
# of Observations NumObs 10
TBE Motor Wgt TBEwgt 5.67 | User Input LN(290)
Ave Motor Wgt AveWgt 5.25 | AVERAGE (MotorWtObservations)
Motor Wgt Stdev Sx 0.43 | STDEVP(MotorwWtObsenvations)
Delta to Bound Delta 0.22 | StdErr*StudentT*SQRT(1+1/NumObs+((TBEwgt-AveWgt)/Sx)"2/NumObs)
Lower Bound LowerBound 4.15 | TBE-Delta
Point Estimate TBELogSpace 4.36 | UC1 = 1.618 * MotorWt " 0.6848
Upper Bound UpperBound 4.58 | TBE+Delta
Lower Bound 63.31 | EXP(LowerBound)
Point Estimate TBE 78.56 | EXP(TBELogSpace)
Upper Bound 97.48 | EXP(UpperBound)

If the number of observations (and degrees of freedom) is not known, the upper and lower bound can be
estimated using the normal distribution similar to the example shown in Table A-13. Note that the upper
and lower bounds are not symmetrical about the mean (CER result). Lognormal rather than normal is a more
appropriate distribution to use in this case.

As the results for the bounds show in Table A-13, the ROM estimate without the adjustment underestimates
the prediction interval range while the ROM approach that includes the adjustment slightly overestimates the
range. It is appropriate that a less accurate approach tends to overestimate the uncertainty.

Table A-13 Manual ROM Estimate of a Prediction Interval For A Linear OLS CER

Element Range Name Adjutl':)ment Adjzvslttnr’]lent Formula

Standard Error (Fit Space) SEEFitSpace 0.141 0.141|From Statistical Package

Adjust for Sample Size & Relevance|SEEAdjust 1.000 1.267|10 datapoints, source data different than project
Adjusted Standard Error (Fit Space) |SEEFitSpaceAdj 0.141 0.179|SEE * SEEAdjust

Mean (Fit Space) MeanFitSpace 4.364 4.364

Mean (Unit Space) Mean 78.558 78.558

Lower Bound (10% lewvel) 65.55 62.45|EXP(NORMINV (0.10,MeanFitSpace, SEEFitSpaceAdj))
Upper Bound (90% level) 94.15 98.82| EXP(NORMINV (0.90,MeanFitSpace, SEEFitSpaceAdj))
Lower Bound as % of PE 83.44% 79.50%|Actual = 80.59

Upper Bound as % of PE 119.85% 125.79%|Actual = 124.08

If even the standard error is unavailable then the analyst must resort to a subjective assessment of the CER
uncertainty bounds (however, lognormal should be used). Last resort subjective uncertainties (see Section
2.5.5) are considerably larger than the example in this section.
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All simulation packages will allow a lognormal distribution to be defined with the mean and some other

probability level. A lognormal can be uniquely defined from two points such as one of the bounds plus the
median (the CER result).
A.8.9 MUPE Interpretation and Error

The result of a MUPE derived CER is interpreted to be the mean of the error distribution regardless of the
functional form of the CER. Since MUPE CERs estimates the mean in unit space, the roll-up elements in an
all-MUPE cost estimate will be the expected value of the sum of the elements below. This is not true of
CERs developed using uncorrected (see Appendix A.7.2) OLS in log space (and may or may not be true for
other regression types).

Note that the standard error of the estimate (also commonly termed multiplicative error) can be used as an
estimate of the standard deviation (o) of the error term. For instance, if the SEE is 20% for a MUPE CER, it
can be interpreted that the CER has plus/minus 20% estimating error (for one standard deviation) at the
center of the database.

A more rigorous estimate of the MUPE prediction interval is possible for linear MUPE CERs (Reference
46). The general specification for a MUPE CER is stated as:

Equation A-63 MUPE Prediction Interval Specification
Y =f(X,,p)g; fori=1,...,n (1)
where:
n = sample size
Y; = observed cost of the i data point, i =1ton

f(X;,B)= the value of the hypothesized equation at the i"™ data point

B = vector of coefficients to be estimated by the regression equation
X, = vector of cost driver variables at the i™ data point
& = error term with mean of 1 and variance c°

Statistical inferences can be made for the regression equation if the normality assumption is further applied
to the error term (¢). If the hypothesized equation is a simple linear function:

f(X;,B)=a + BX; fori=1,...,n
The (1-a)% prediction interval (PI) for a future observation Y when X is at x, (i.e., ¥, ) is then given by

Equation A-64 MUPE Prediction Interval For a Future Observation

— 2 0.5
jj(WhenX:xo)i’m/z,df)*Se*[j’ng ! +(x0 XW))

Dow, SS...

)3 +¢ *Se*[jz-q- 1 +(x0_';w)2 ”
0 — “(a/2,df) 0 ZW' (ZW)Sz

Vo £ tiasnap) * (Ad). SE)

where:
wj is the weighting factor for the i data point and w; = 1/(fi*f;)
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f; denotes the predicted value of the i data point
Se is CER’s standard error of estimate

n n
xw:zwi(xi) Zwi
i=1 i=1

Swax = Zwi(xi _‘;w)2
i=1

wa :\/iwi(xi _)_Cw)2 /iwz
i=1 i=1

df is the degrees of freedom

t(w/2,4) 1S the upper o/2 cut-off point for a t-distribution with “df” degrees of freedom

Adj. SE is the adjusted standard error for PI

Swx 1s the weighted sample standard deviation of the independent variable x. It is the sample standard
deviation of the x variable evaluated in the fit space.

If the hypothesized equation is a simple factor equation: f(X;,B) =pX; fori=1,...,n

The (1-a)% prediction interval (PI) for a future observation Y when X is at x, (i.e., ¥, ) is then simplified to
the following formula:

Equation A-65 MUPE Prediction Interval For a Future Observation For a Factor CER

N 1 (xo)2
Yo it(a/Z,nfl)*Se* +
WO Swax

R |
:yoit(a/Z,n—l)*Se* (1"‘;))’3

A.8.10 MUPE SEE
For MUPE equations, the SEE measure is typically stated in percentage terms and is provided below.
Equation A-66 Standard Error of the Estimate for MUPE CERs
1 n 0.5

2, —2)/2}2j
n—=p iz
= . SSE / dfe
= MSE

Note: Since SEE measures the average amount of variation between the sample data and the regression
equation, the smaller the value of SEE, the tighter the equation (i.e., the more precise the prediction).
MUPE’s SEE is commonly termed “standard percent error” (SPE).

_ 5 % Q%
=)o 1it(a/2,n—l) Se 1+

S |-

=J’>0(lit(a/2,n—l) * Adj. SE)

SEE:(

A.8.11 Calculating the Prediction Interval for MUPE CERs

Regardless of the CER form, if it was derived using the MUPE method, it can be assumed that the CER
produces the mean and the uncertainty distribution is normal. To estimate the bounds of the normal
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distribution for a linear MUPE CER, calculate the prediction interval based upon the Technical Baseline
point estimate for the input variables. Details on a closed form solution are provided in Appendix A.8.9.

A.8.12 ZPB/MPE (or ZMPE Method) Interpretation and Error

ZMPE delivers the mean of an arbitrary error distribution. The ZMPE technique does not yield the
traditional statistical properties suitable for characterizing the meaning of the CER result and its error that are
customary with OLS and LOLS regressions. Also, the PI for the ZMPE equation has not been validated yet.
For these reasons, many organizations prefer OLS or MUPE over the ZMPE process (Reference 52).
However, ZMPE has been selected as a technique of choice by several organizations.

ZMPE makes no assumptions about the nature of the error distribution, so any type of distribution can be
used. The usual assumption is that the error distribution is lognormal. To add a little rigor to the process,
one could perform a distribution fitting process to identify the appropriate curve. ZMPE process is blind to
the shape of the distribution, and simply seeks fit parameters that minimize the sum of the squared percent
errors between the data points and the CER, with the added constraint that the bias be zero.

A.8.13 Iterative Regression Interpretation and Error

There have been various attempts to generate suitable statistics from iterative regression analysis. The
Bootstrap method (see Reference 45) is one approach. However, the reference did not provide an error
assessment of the Bootstrap prediction intervals. The only claim is that the Bootstrap PIs were “close” to the
PIs generated by the OLS method for a simple linear CER with 10 data points.

A.9 GOODNESS OF FIT STATISTICS

A.9.1 Overview

Goodness of fit statistics measure how well the fitted distribution compares to the input data. What most
analysts forget is that there are a variety of ways to define the input data. Determining how the cumulative
probability will be assigned to the input data will have a profound impact on the fit results when only a few
data points are available. Section 2.4.3.2 covers this topic in detail.

When fitting distributions to the input data, it is not enough to find the best fit that minimizes the error of
some statistical metric to identify the best fit. The best fit may not be a statistically significant fit. So in
addition to finding the best fit, there is a need to perform a goodness-of-fit test. Guidance on what
combination of statistics to use is provided in Section 2.4.3.5.

A.9.2 Kolmogorov-Smirnov (K-S)

The K-S test compares the sample CDF with the fitted CDF and computes the maximum vertical distance
between them. An attractive feature of this test is that the distribution of the K-S test statistic itself does not
depend on the underlying cumulative distribution function being tested. Another advantage is that it is an
exact test (the Chi*2 goodness-of-fit test depends on an adequate sample size for the approximations to be
valid). Despite these advantages, the K-S test has several important limitations:

e It only applies to continuous distributions.
e [t tends to be more sensitive near the center of the distribution than at the tails.

Due to the first two limitations, many analysts prefer to use the Anderson-Darling goodness-of-fit test.

A.9.3 Anderson-Darling (A-D)

The A-D test measures total area between the sample and the fit CDF. Weightings can be used to focus on
the fit in the tails. The Anderson-Darling test makes use of the specific distribution in calculating critical
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values. This has the advantage of allowing a more sensitive test and the disadvantage that critical values
must be calculated for each distribution. Currently, tables of critical values are available for the normal,
lognormal, exponential, Weibull, extreme value type I, and logistic distributions.

The basic test statistic for a given sample {X;, X, ..., X} (in ascending order) is listed below:
Equation A-67 Anderson Darling Goodness of Fit Test

Area between the curves = A’=-n—-S

where:

n 2k—1
S=>" ——(In(F(X,)+In(1-F(X,,)))
n b
F is the cumulative distribution function of the fitted distribution,
X;’s are the ordered data, and
n is the sample size

Like the K-S statistic, the lower the resulting statistic, the better the fit.

A.9.4 K-S and A-D Test for Statistical Significance

One of the more confusing aspects of the K-S and A-D tests are their applicability to distribution fitting. If
either the form of the distribution or the parameters of a distribution are defermined from the data, then the
basic formulas for calculating a p-value (confidence level that the fit is statistically significant) need to be
adjusted. In such cases, Monte Carlo or other methods (@Risk uses a bootstrap method) may be required.
Tables have been prepared for some cases. Details for the required modifications to the test statistic and for
the critical values for normal, lognormal, exponential, extreme-value, weibull, gamma, logistic, cauchy, and
von Mises distributions can be found in Reference 8. Neither beta nor triangular is addressed in Reference
8 and neither Crystal Ball nor @Risk report a p-value for triangular, beta or other distributions.

The Crystal Ball Help manual states: P-values are also displayed for the following continuous distributions
when the Anderson-Darling or Kolmogorov-Smirnov methods are used: normal, exponential, logistic,
maximum extreme, minimum extreme, uniform, gamma, Weibull, and lognormal. P-values for the other
distributions are under development. Since p-values for Anderson-Darling and Kolmogorov-Smirnov
statistics are influenced by the number of data points being fitted, an adjustment formula is used to arrive at
the asymptotic Anderson-Darling and Kolmogorov-Smirnov statistic for a given sample size. The quality of
fitted parameters and the calculated p-value deteriorates as the sample size decreases. Currently, Crystal Ball
needs at least 15 data points for fitting all the distributions.

@Risk uses a different method (bootstrap, see the @Risk user’s manual for details) to estimate p-values for
the K-S and A-D test. Just like with Crystal Ball, the quality of fitted parameters and the calculated p-value
deteriorates as the sample size decreases. ACEIT (CO$TAT) does not currently report the K-S or A-D
statistic, but will in a future release.

What does this mean? It means that despite the usefulness of K-S and A-D as goodness-of-fit tests their p-
values have limited utility when comparing statistical significance between distribution types. Furthermore,
both Crystal Ball and @Risk warn the user that the quality of the K-S and A-D results deteriorates as the
sample size gets smaller. That does not deter a large segment of our community from using these tests.

A.9.5 Chi”2 Test

For the Chi”2 test, the sample is divided into equal probability bins based upon the fitted curve. It counts the
number of sample points that fall in the bins and compares the deviation between the number of observations
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in each bin and the curve’s prediction of how many observations should land in each bin. The greater the
deviation, the more likely we are correct in rejecting the fitted curve for prediction purposes.

The Chi”2 test is based upon dividing the sample into a number of bins. Table A-14 presents five popular
options for determining the number of bins to use. For each bin, the following formula is evaluated and then
summed to calculate the Chi”2 statistic:

Equation A-68 Chi*2 Goodness of Fit Statistic

where:

Z; (SampleFreq (i) — ExpectedFreq(i))’ | ExpectedFreq(i)

k is the number of bins,

SampleFreq(i) is the actual number of observations in the i bin (i=1,...,k),and

ExpectedFreq(i) is the expected number of observations falling in the i bin according to the fitted
distribution.

The following sequence is used to evaluate the formula:

Select the number of equal probability bins

Calculate the cumulative probability level for each bin

Estimate the bin boundary values using the fitted distribution
Count the number of data points (SampleFreq) falling in each bin

Calculate the expected number of observations (ExpectedFreq) per bin (i.e., number of sample
observations/number of bins)

Calculate the Chi”2 statistic

Calculate the p-value for the Chi” test (a one-tailed test) and compare to the level of significance to
determine the statistical significance of the fit

Table A-14 identifies five popular methods for estimating the optimum bin count. Excel formulations are
also provided. The Mann-Wald method divided by 2 (discussed in detail in Reference 8) is used by Crystal
Ball and CO$TAT to determine the number of bins for the Chi*2 goodness of fit test (see Section 2.4.3.5).
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Table A-14 Formulas for Choosing Histogram Bin Count

4[ 2ir JM
Mann-Wald —m—l(a)l
ROUND({4*(2*ObsCount"2/(NORMSINV(ChiSigLvi)}'2)*0.2 0)

Sturges
(performs poorly for 1+log,(n)=1+3.322log,,(n)=1+1.443In(n)
n<30)

. 3/n(max-—min)
Scott's Choice Y P

ROUNDUP{{n*{1/3)*SampleRange)/(3.6*Stdev(Sample)).0)

3/n(max- min)
Freedman-Diaconis 2I0R

ROUNDUP((n*{1/3)*SampleRange)/(2*SamplelnnerQuad),0)

Square Root cholce Vn

where,
n is the sample size
@ ! is the inverse standard normal distribution
a is the level of confidence for the Chi”2 test

IQR is the Inner Quartile Range of the sample set Y

A.9.6 Akaike Information Criterion (AIC)

The AIC is used to measure the relative goodness-of-fit for a statistical model. AIC is founded in information
theory, offering a relative measure of the information lost when a given model is used to describe reality.
Some information will almost always be lost due to using a candidate model to represent the “true” model.
Among the candidate models, we want to select the one that minimizes the information loss.

This criterion was developed by Hirotsugu Akaike, under the name of "an information criterion" (AIC). And
it was first published by Akaike in 1974 (see Reference 4). In the general case, the AIC is given by:

Equation A-69 Akaike Information Criterion (AIC)
—2In(L) + 2p = n*In(SSE/n) + 2p
Where,

p is the number of parameters estimated in the statistical model

n is the sample size

SSE is the sum of squared deviations between the actual observations and the predicted values from
an estimating model

L is the maximized value of the likelihood function for the estimated model.

The selection criterion is as follows: given a set of candidate models, the model which has the smallest AIC
value, is the preferred model.

When fitting models to a data set, we can increase the likelihood by adding more parameters, but doing so
may result in over-fitting. Based upon the formula above, the AIC is driven by the goodness-of-fit measure;
meanwhile, it also penalizes over-fitting. In other words, the more estimated parameters there are in the
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model, the larger the AIC becomes at a given goodness-of-fit measure. For example, if both a lognormal
distribution and a beta distribution are equally good candidates for fitting a particular data set, the lognormal
distribution is preferable because it has only two estimated parameters while the beta has four.

In the actual implementation, we first select a set of candidate models for a given data set. We then compute
these models’ respective AIC values and we find the model with the smallest AIC. Additionally, we can use
the statistic below to indicate the relative probability that the ith model minimizes the (estimated)
information loss:

Equation A-70 AIC Statistic to Indicate Relative Probability That ith Model Minimizes Info Loss
exp((AICmin—AICi)/2)
fori=1,2,...,m
where,

m is the total number of candidate models
AIC1, AIC2, ..., AICm are used to denote their respective AIC values
AICmin represents the minimum of these values.

These numbers (i.e., exp((AICmin—AICi)/2)) can be used as the weighting factors for developing a weighted
model if they are relatively large. Let us use the following example to explain the process. If there are three
candidate models for a particular data set, with AIC values 50, 52, and 60. The first model is the best one
because its AIC value is the smallest among the three. The second model is exp((50—52)/2) = 0.368 times as
probable as the first model to minimize the information loss, while the third model is exp((50—60)/2) = 0.007
times as probable as the first model to minimize the information loss. In this case, we would eliminate the
third model from further consideration. We could also take a weighted average of the first two models, with
weights 1 and 0.368, respectively, and then do statistical inference based on the weighted model. (See
Reference 55 for details.) Alternatively, we could gather more data to distinguish between the first two
models.

Note that AIC values provide a means for model selection, but AIC does not tell how well a model fits the
data in an absolute sense. If all the candidate models fit poorly, AIC will not give any warning of that.

A.9.7 Bayesian information criterion (BIC)

The BIC or Schwarz criterion (also SBC, SBIC) was developed by Gideon E. Schwarz in 1978 (see
Reference 6). The BIC is also used for model selection among a finite set of models and is closely related to
the AIC. Mathematically, it is given by

Equation A-71 Bayesian information criterion (BIC)
—2In(L) + p*In(n) = n*In(SSE/n) + p*In(n)

Just like the AIC, the BIC statistic is also derived from the log-likelihood function® as shown by the formula
above. Both statistics take into account the number of estimated parameters of the fitted distribution.
However, the BIC penalizes more strongly than AIC for the number of estimated parameters.

Note that Akaike was so impressed with Schwarz's Bayesian formula that he developed his own Bayesian
formala, which is now referred to as “Akaike's Bayesian Information Criterion” (ABIC). (See Reference 7
for details.)

% Log-likelihood function: A likelihood function, by definition, is the joint probability density function of a random sample.
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The general recommendation of @Risk Version 6 is to use the AIC or BIC for selecting a fit result unless
there is a specific reason for not doing so.

A.10RISK SIMULATION SAMPLING METHODS

A.10.1 Monte Carlo

The Monte Carlo method has been successfully used in scientific applications for at least 65 years. It is a
problem solving technique used to approximate the probability of certain outcomes by running multiple trial
runs, called simulations, using random variables. Credit for inventing the Monte Carlo method often goes to
Stanislaw Ulam, a Polish born mathematician who worked for John von Neumann on the United States’
Manhattan Project during World War II. Ulam is primarily known for designing the hydrogen bomb with
Edward Teller in 1951. He invented the Monte Carlo method in 1946 while pondering the probabilities of
winning a card game of solitaire. Ulam and Metropolis published the first paper on the Monte Carlo method
in 1949 (Reference 1).

A.10.2 Latin Hypercube

The Latin Hypercube technique is a modification of the Monte Carlo sampling process. The concept was
developed to ensure that the entire range of each variable is sampled. Latin Hypercube sampling (also known
as stratified sampling) has been shown to require fewer model iterations to approximate the desired variable
distribution to the same level of accuracy as the Monte Carlo method. It works as follows:

e The distribution is divided into segments of equal probability

e Segments are randomly selected for sampling

e All segments are sampled before a segment is sampled again

e Each sample is drawn from its segment by uniform random sampling

In Figure A-11, the triangle cumulative distribution function has been divided into 10 intervals of equal
probability (i.e. the area of each interval is the same) and a sample is randomly selected from each interval.
Once a sample is taken from a particular interval, this interval is not sampled again until all segments have
been sampled. The triangle to the left illustrates how Crystal Ball made 10 random selections. Note that the
tails of the distribution are not sampled. But in the triangle to the right, 10 random samples using the Latin
Hypercube method does sample more of the distribution. Tools like @Risk and ACE automatically set the
number of segments to equal the number of samples (also called trials or iterations). Tools like Crystal Ball
allow the user to specify the number of segments independent of the number of samples taken. This
handbook recommends that segments be set to the same number as set for trials.

A-45



Joint Cost Schedule Risk and Uncertainty Handbook
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Figure A-11 Compare Monte Carlo to Latin Hypercube

A.11CORRELATION

A.11.1 Overview

Correlation is the term used to describe the degree to which variables “move together”. Correlation between
any two random variables does not prove or disapprove a cause-and-effect relationship between them.

An important consideration in risk and uncertainty analysis is to adequately account for the relationships
between the cost elements during a risk simulation. This interrelationship between the WBS elements is
commonly known as "dependency” or “correlation.” For example, data from a number of similar projects, or
expert opinion may indicate that as the cost of WBS element A increases, the cost of WBS element B also
tends to increase (positive correlation); and perhaps the cost of WBS element F is expected to decrease
(negative correlation). Often, it is easier to defend the application of correlation between uncertain input
variables that are driving the results of one or more WBS elements.

Correlation is applied at the lowest levels of the WBS, where CER uncertainty is defined. It is also applied
across input variables. Correlation does not impact the distributions it is applied to; it impacts the parent
level of the WBS or anywhere two or more correlated variables are combined. The specification of
correlation within an uncertainty assessment will magnify the uncertainty impact at the aggregate level as
child WBS elements are forced to move together. If the child element uncertainty distributions are left to be
sampled independently of one another, then the high sample on one distribution can be canceled by a
simultaneous low on another element. A common reason for very steep S-curves at the parent levels in
estimates with many elements is a lack of correlation. Positive correlation causes elements to move in the
same direction (tending to magnify the uncertainty effect), while negative correlation causes elements to
move opposite to each other (tending to cancel each other). Care should be taken when a random variable
occurs in the denominator of an equation as opposed to the numerator. In such cases movement of the
variable has the opposite impact than in the cases of the variable is in the numerator. As the denominator
variable gets larger, the overall value of the equation get smaller rather than larger. As such, the movement
of a variable in the denominator positively correlated to one in the numerator will tend have the opposite
effect of the movement of the numerator. This results in the combined effect of the movement of the two
variables tending to cancel each other out. That is, if the denominator proportionality increases in line with
the increased value of the numerator, the overall ratio (equation value) remains constant.

Implementing positive correlation across the risk and uncertainty distributions will result in broader
dispersion (increased variance) of the uncertainty result at the aggregate or parent levels in the WBS. The
impact can be significant. There have been many papers on the topic, such as Reference 20, 21, 22, 25, 26
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and 30. Reference 31 provides reasons why the correlation between weight variables should not be
calculated from the same data set used to develop a CER.

A.11.2 Functional Correlation

Correlation of the risk distributions in a cost model often will be already captured through the mathematical
relationships within the cost model. For instance, if both the costs of Data and SEPM are modeled by using
certain factors times the cost of the Prime Mission Product (PMP), then Data and SEPM will be positively
correlated in the simulation. In this situation, as PMP changes in the risk simulation, the costs of Data and
SEPM will change in the same direction accordingly; therefore, they are positively correlated. Beware of
unintended correlation. For example, if the same uncertainty labor rate is used across a number of elements,
those elements will be highly, positively correlated. To control this situation, separate uncertain labor rates
should be created and the correlation between them controlled.

A.11.3 Applied Correlation

Applied correlations are those specified by the user and implemented within a model. Before specifying any
additional correlation among the WBS elements, it is recommended that the user measure the correlations
already present in the cost risk model. Correlations (or dependencies) between the uncertainties of WBS
CER uncertainties are generally determined subjectively. There have been many studies attempting to find
objective evidence for correlations. However, these correlations should not be estimated by the cost-vs.-cost
correlations from the same historical database from which the CERs are derived. In other words, strong
correlations between cost elements in a database should not be mistaken as evidence that residuals or
percentage errors of the CERs derived from the same database are correlated. See Reference 25, 26 and 31
for details.

A.11.4 MEASURING CORRELATION

The two primary methods for measuring correlation are Pearson’s Product Moment and Spearman Rank
order. The appropriateness of these two types in the context of cost estimating is discussed in References
20, 21 and 22. Crystal Ball and @Risk employ Spearman Rank and ACE employs a variation on the Pearson
Product Moment method recommended in Reference 30. In practice, there is little or no impact on the total
cost results when the only difference is the correlation type applied. The results of the example model in this
handbook demonstrate this.

A.11.5 PEARSON’S CORRELATION COEFFICIENT

Pearson's correlation coefficient between two sets of numbers is a measure of the linear association between
these two sets. It measures the degree to which two sets of data move together in a linear manner. A high
positive correlation indicates a strong direct linear movement and a high negative correlation represents a
strong inverse relationship. The correlation ranges between —1.0 and +1.0, where -1 indicates a perfect
inverse relationship, 0 indicates no correlation, and +1 indicates a perfect positive relationship. In
probability theory and statistics, Pearson’s correlation coefficient indicates both strength and direction of the
linear relationship between two variables. Pearson’s correlation coefficient is important in cost-risk analysis
because it appears explicitly in the formula for the total-cost standard deviation and therefore impacts the
spread of the total-cost distribution.

By definition, Pearson's correlation coefficient (Pearson’s r) calculated between two sets of numbers {x;} and
{yi} is given by
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Equation A-72 Pearson’s Correlation Coefficient

n
Z (yi _y)(xl' _)_C)
. i=1

*y n o |2 —\2
Z (yi_y) Z (xl'_x)
i=1 i=1

Where X and y are the means of {x;} and {yi}, respectively, and n is the sample size.

Pearson Product Moment Correlation coefficient (PPMC) is the most widely used method for determining
correlation. It is a measurement of the linear relationship between two related variables. Figure A-12
demonstrates a different aspect of the PPMC, specifically:

e First row demonstrates how the strength relates to the dispersion
e Second row demonstrates how the strength does not represent the slope of the relationship

e Third row demonstrates how the coefficient alone could be an insufficient measurement of the

relationship

1 0.8 0.4 0 -0.4 -0.8 -1
1 1 1 -1 1 1
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Figure A-12 PPMC Result For Various Patterns of Data

A.11.6 SPEARMAN’S RANK ORDER CORRELATION

Spearman’s rank order correlation is used in nonparametric inferences to determine if two random variables
are independently distributed. Therefore, no assumptions are made about the underlying distributions.
When Spearman’s correlation coefficient is significantly different from zero, it can be interpreted as an
association between two variables, just like the ordinary Pearson product-moment correlation. However, the
Spearman’s rank correlation coefficients do not appear explicitly in the formula for the total-cost standard
deviation. Therefore, their impact upon the spread of the total-cost distribution is not generally understood.

The Spearman Rank Order correlation is computed from the ranking of the elements in the ordered pairs, as
opposed to the actual values. If some of the ranks are identical, all of the ties are assigned the average of the
ranks that they would have had if their values had been slightly different. In this situation, some of the ranks
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could be partial integers. In all cases the sum of all assigned ranks will be the same as the sum of the
integers from 1 to n where n represents the number of elements, namely n(n + 1)/2.

To calculate the Spearman Rank correlation coefficient, let R; be the rank of x; among the other x’s, let S; be
the rank of y; among the other y’s, and let ties be assigned the appropriate average as described above. Then
the rank-order correlation coefficient is defined to be the linear correlation coefficient of the ranks, and is
given below:

Equation A-73 Spearman Rank Correlation Coefficient
> (R, ~R)XS, ~5)
rS = — —
VX R =R) #3 (5, ~5)?

If there are no ties in the ranking, then the equation can be reduced to:

Equation A-74 Spearman Rank Correlation Coefficient When No Ties in the Ranking

_6*>d’

r, =1 >
n*(n--1)

N

Where:

d = difference between the paired ranks
n = number of paired ranks

A.11.7 Comparing Spearman Rank to Pearson Product Moment

Crystal Ball and @Risk employ “Spearman Rank” correlation. Excel’s CORREL measures Pearson
Product-Moment. While there have been several papers denouncing rank order correlation as inappropriate
for cost analysis (see References 20 and 21), it is rare to see notable differences in results between the two
approaches (see References 30, 33, 34, 35, 37). As an example, the resulting correlation matrices from the
missile example as generated by Crystal Ball (which uses Spearman Rank) and ACE (which uses Pearson
Product-Moment) are almost identical as illustrated in Table A-15. The shaded cells are the only ones where
the correlation coefficient difference by more than 0.02 but less than 0.03.
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Table A-15 Measured Pearson Product Moment Correlations

2, a % 2 g 20 g 2 A % g g 5 =

ol g |3 |g9|8a| s |22 = |u| & |g°|y°

= < |89 53 o] & |6 | 2|8 |2

CB Resultant Pearson Product Moment Correlation

Missile Sys 1.00 | 090 | 0.75 | 0.72 | 0.75| 0.73 | 0.46 | 0.48 | 0.61 | 0.74 | 0.73 | 0.61
EMD 1.00 | 0.82 | 0.80 | 0.57 | 0.81 | 0.56 | 0.58 | 0.49 | 0.81 | 0.81 | 0.48
AV EMD 1.00 | 1.00 | 0.48 | 0.42 | 0.30 | 0.34 | 0.37 | 0.97 | 0.97 | 0.37
DesignDevVEMD 1.00 | 0.42 | 040 | 0.29 | 0.33 | 0.33 | 0.97 | 0.97 | 0.32
Proto EMD 1.00 | 045 0.21 | 0.23 | 0.78 | 0.47 | 0.47 | 0.78
SW EMD 1.00 )1 0.29 | 0.33 | 0.35 | 0.40 | 0.40 | 0.34
SysEng EMD 1.00 | 0.67 | 0.29 | 0.33 | 0.33 | 0.29
PM EMD 1.00 [ 0.29 | 0.37 | 0.36 | 0.29
STE EMD 1.00 | 0.40 | 0.40 | 0.72
Trg EMD 1.00 [ 0.96 | 0.40
Data_ EMD 1.00 | 0.39
PSE_EMD 1.00

2.1 o S |2 Qlea S |2 a S S = D &

= < |89 5 (oY & |5 | 2|8 |%

ACE Resultant Pearson Product Moment Correlation

Missile Sys 1.00 | 091 | 0.75| 0.72 | 0.75| 0.72 | 0.45]| 0.47 | 0.61 | 0.74 | 0.74 | 0.61
EMD 1.00| 0.82 | 0.80 | 0.56 | 0.80 | 0.55 | 0.57 | 0.48 | 0.81 | 0.81 | 0.47
AV EMD 1.00 | 1.00 | 0.47 | 0.40 | 0.30 | 0.33 | 0.36 | 0.97 | 0.97 | 0.36
DesignDevEMD 1.00 |1 041 038 029 ] 0.32 | 0.31 | 097 | 0.97 | 0.31
Proto EMD 1.00 | 0.44 | 0.20 | 0.22 | 0.77 | 0.46 | 0.46 | 0.78
SW EMD 1.00 | 0.27 | 0.32 | 0.34 | 0.38 | 0.39 | 0.34
SysEng EMD 1.00 | 0.65 | 0.28 | 0.34 | 0.34 | 0.28
PM EMD 1.00 | 0.28 | 0.36 | 0.36 | 0.28
STE EMD 1.00 | 0.39 [ 0.39 | 0.72
Trg EMD 1.00 | 0.96 | 0.38
Data_ EMD 1.00 | 0.39
PSE_EMD 1.00

A.12ALTERNATIVE ALLOCATION METHODS

A.12.1 Adjusting Standard Deviation for Correlation

Section 3.6.3 described a very simple allocation method where standard deviation was used as the basis for
allocating the difference between a parent’s result at a specific probability to the sum of its children at the
same probability (adjusting the percentile, not the point estimate). An alternative is to use correlation
adjusted standard deviations. Lower-level variances (standard deviation squared) will not sum to the parent
level variance unless the impact of correlation is captured. To obtain the correct variance sum, the element
variances need to be adjusted for correlation using Equation 3-1. The process to perform this adjustment is
illustrated in Figure A-13. The Excel function to make this calculation in cell K9 is
[9*MMULT(Q9:Y9,$1$9:$1$17).
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Need”*2 Adjusted for Correlation = Need*MMULT(CorrRow, EMD Need
| J K S| T

G H W [ P [ a R u VW] X Y
4
Calculate and Adjust Std Dev | Std Dev Std Dev Variation EMD
5 For Correlation Reported| Adj For Corr| Adj For Corr
Des & Sys
6 Missile System 569,883 EMD | AV | Dev [Proto| SW | Eng | PM | STE | Trg | Data | PSE
7 Engineering and Manufacturing D| 546,974 46,974 $2,206,594,963 1.000] 0.806( 0.792| 0.561| 0.799] 0.546| 0.572| 0491 0.801| 0.802| 0.480|
8 Air Vehicle $27,862]  §776,302,671 ).606 1.0001_0.998] 0.485 0385 0273 0.323] 0.378| 0.970( 0.970] 0.363
9 Design & Development $19.800) $27 134  §736,251,907 0.792 J9q| 1.000| 0425 0365 0.269] 0318| 0331| 0967 0968| 0316
10 Prototypes §1,5620 $6,329 540,050,764 0.661] 0485 0425 1.000| 0.437] 0.178| 0.207| 0.774| 0.474| 0.472| 0.771
11 Software 523,532 $29,723| $883,431,894 0.799| 0385 0365 0437 1.000] 0.272 0.314| 0.339| 0.379| 0.378( 0.345
12 System Engineering $8,324 $14,611 $213,482,727 0.546 0273 0269 0178 0272 1.000| 0.660( 0.268| 0.306| 0.308| 0.267
13 Program Management $5,480 $12,132|  $147,180,502 0.572 23 0.31 207 314 0.66C[ 1.000{ 0.274| 0.348| 0.352| 0.274
14 System Test and Evaluation $1,684 $6,231 $38,829,821 0.491| 0.378 0331 0.774 0.339 266 0.274| 1.000] 0.407| 0.409( 0.717
15 Training $1,503 $7.518 $66,527 069 0.801| 0970 0967 0474 306 0348 0407) 1.000{ 0959| 0388
16 Data $1,997 $8,673 §75,220,490 0.802] 0.970 0.968 0.472 0.378 0.308 0.352 0409 0.959 1.000| 0.391
17 Peculiar Support Equipment 5693 $3,952 515,619,790 A 1 71 4 191 1.000

Figure A-13 Adjusting Standard Deviation for Correlation

The correlation matrix is obtained from extracting the trial data and measuring the correlation between
elements. The process defined in Section 3.6.3 is the same, but using the adjusted standard deviations.

Alternative approaches to risk dollar allocation are discussed in detail in Reference 51.

A.12.2 Needs-Based Allocation

The Needs-Based Allocation method is an alternative to the standard deviation based allocation method
described in Section 3.6. Details of this approach can be found in Reference 49 and they are summarized
here. Key assumptions and goals of this method include:

e Allocation of risk dollars to project elements must put risk dollars where they are “needed”
e Need of any WBS element is defined as the probability it will overrun its point estimate
e Need is calculated as the difference between the selected percentile and the point estimate

e An element that has preponderance of probability below its point estimate (such as a left skewed
distribution) has little or no need

e Need is adjusted by inter element correlation in the same way as Equation 3-1, but instead of
variation, the correlation adjustment is applied to need as follows:

0 Risk dollars at the parent level are prorated (allocated) to the child elements based on need
0 WRBS elements having more cost uncertainty shall be allocated more risk dollars

0 Element uncertainty used to allocate risk dollars shall capture the impact of inter-element
correlation

0 Risk-dollar allocation shall not result in an element’s estimate being reduced below its point
estimate

Reference 49 discusses a variation of the method identified in in Section 3.6. Instead of adjusting the
selected percentile (as defined in Section 3.6), the author discusses the issues arising when prorating risk
dollars relative to the point estimate. The key complaint is that the method in Section 3.6 will blindly reduce
an element’s cost below the point estimate. This is a valid point, but others may view this as a strength
rather than a weakness if the intent is to fund all elements to roughly the same percentile. Business rules
such as these need to be considered and adopted or rejected as agencies deem fit.

The needs method is summarized as follows:
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e Compute the need for each WBS element, Need; (minimum need is zero)

e Compute correlation between risk dollar requirements of elements 1 and j, Corr;
e Compute Total Need Base
Equation A-75 Need Based Calculation

Total Need Base = Z Z Corr;;Needi Need;

= j=l
e Compute the Correlation Adjusted Need For Each Element
Equation A-76 Correlation Adjusted Need;

ZCorz;.jNeedNeedj
i=1

e Risk dollars are prorated to child elements based upon the correlated adjusted need per element
divided by the total base need. Need is used instead of standard deviation to prorate the risk dollars.

While the reference does not address it, the algorithm has to account for child elements where the point
estimate is greater than the desired probability level. Presumably, the difference between the point estimate
and the desired probability level (a negative number in this case) is subtracted from the parent risk dollars
and the remainder is allocated to those elements where the desired probability level is in fact higher than the
point estimate. This is necessary if the child elements are to sum to the parent correctly. It is unclear what
should happen if the amount to be subtracted from the parent level risk dollars is higher than the parent level
risk dollars.

The standard deviation method in Section 3.6 performs the allocation to immediate children and from there
to the next lower level and so on. In our example for the needs approach, the process is applied to the lowest
level WBS elements all at the same time. The first step, however, is to develop the need adjusted for
correlation to be used as the basis for the allocation. The data required to perform the calculation is the point
estimate, the simulation results for every WBS element at the probability of interest and the correlation
matrix. We can obtain the correlation matrix by extracting the simulation data and measuring the correlation
between elements using the Excel CORREL function.

The necessary data for the EMD phase of our example model is illustrated in Figure A-14. It also shows
how to apply Equation A-76 in Excel to generate the correlation adjusted need. The formula in cell F9 is
E9*MMULT(Q9:Y9,$E$9:$E$17). This formula is written to facilitate copy/pasting it to cells F10:F17.

Need*2 Adjusted for Correlation = Need*MMULT(CorrRow, EMD Need
c S T

A B D E F gl o T Pl alR UV IWI XY
4
Calculate and Point 85% Need NeedA2 EMD
5 Adjust Need For Correlation |Estimate | Resylt |Unadiusted| AdjFor Corr
Des & Sys
6 Missile System $246,836| $393,263 EMD | AV | Dev |Proto| SW | Eng | PM | STE | Trg | Data | PSE
7 Engineering and Manufacturing D{ $83.539| $175,643] $92,104| $5478.432,524 1.000| 0.806| 0.792| 0.561| 0.799| 0.546| 0.572 0.491 0.801| 0.802| 0.480
3 Air Vehicle §14,944| $44,271 $1,649,681,403 0.506| 1.000{ 0.998| 0.485| 0.385/ 0.273| 0.323| 0.378| 0.970) 0.970( 0.363
9 Design & Development §12,000] $39,22 $27,226)§ $1,530,361,494 0.792] 0.9 ZI 1.000] 0.425| 0.365| 0.269| 0.318| 0.331| 0.967| 0.968| 0.316 I
10 Prototypes $2,944 §5,824 2,611 $119,319,909 561 485 D a2T] TO00] 0A37] 07C| 0207 0.7/ vara oargl o
11 Software $31,500( $66,194 $34,692(} $2,010,072,404 0.799] 0385 0365 0437| 1.000{ 0.272| 0.314| 0.339] 0.379| 0.378| 0.345
12 System Engineering $17,500( $354689 $17.981[] $818.016,531 0546 0273 0269 0178 0272) 1.000| 0.660| 0.268| 0.306| 0.308| 0.267
13 Program Management $15,000| $26,0494 S11,045[1 S$511,171,578 0672| 0323 0318 0207 0314 0660| 1.000( 0.274| 0.348| 0.352 0.274
14 System Test and Evaluation $1767 §5,281 $3,5614 $132,107,590 0.491] 0378 0.331 0.774 0339 0268 0.274| 1.000| 0.407| 0.409| 0.717
15 Training $897| 93,144 52,249 $128,973,713 0.801] 0.970 0.967 0474 0.379 0306 0.348 0.407| 1.000| 0.955| 0.388
16 Data 51,196 $4,23 $3,035 $174,402,151 0.802] 0.970 0.968 0472 0378 0308 0.352 0409 0.959| 1.000] 0.391
T Peculiar Support Equipment §$736| §2,209 $1,472 554,007,154, 0.480] 0.363 0.316 0.771 0.345 0267 0274 0717 0388 0.391] 1.000

Figure A-14 Calculating Need and Correlation Adjusted Need
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The need allocation process is illustrated in Figure A-15.

[ Column 1 2 3 4 5 6 7
] ) ) Child Allocated )
85% Allocated from Second Level Point Estimate Need Required Neeq Allocation Neeclj Alloclztlon Adjustment Result Risk Dollars
BY 2014 $K (6-1) Basis (x 0.001)| (3/(3 Bold)) @+ 4 (1+5) (6-1)
Missile System MissileSys $246,836 $402,767| $155,931
1 Engineering and Manufacturingg EMD $83,539 $92,104 5,478,433 $175,643] $92,104
1.1 Air Vehicle AV_EMD $14,944 $42,679 $27,735
111 Design & Development DesignDev_EMD $12,000 1,530,361 27.9% $25,728 $37,728 $25,728
1.1.2 Prototypes Proto_EMD $2,944 119,320 2.2% $2,006 $4,950| $2,006
1.2 Software SW_EMD $31,500 2,010,072 36.7% $33,793 $65,293 $33,793
1.3 System Engineering SysEng_EMD $17,500) 818,017| 14.9% $13,753 $31,253 $13,753
1.4 Program Management PM_EMD $15,000 511,172 9.3% $8,594 $23,594 $8,594
1.5 System Test and Evaluation STE_EMD $1,767, 132,108 2.4% $2,221] $3,988| $2,221]
1.6 Training Trg_EMD $897 128,974 2.4% $2,168| $3,065| $2,168|
1.7 Data Data_EMD $1,196) 174,402 3.2% $2,932] $4,128 $2,932)
1.8 Peculiar Support Equipment  [PSE_EMD $736 54,007, 1.0%, $908, $1,644 $908
2 Production & Deployment Production $163,297 $63,828 2,602,752 $227,125) $63,828
2.1 Air Vehicle ProdAV $104,826 $150,820 $45,994
2.1.1 Airframe Airframe $21,651 372,666 14.3% $9,139 $30,790) $9,139
212 Propulsion Propulsion $21,849 362,005 13.9% $8,877.48 $30,727| $8,877|
2.1.3 Guidance Guidance $27,810 476,417 18.3%| $11,683.22 $39,494 $11,683
2.1.4] Payload Payload $17,246 317,185 12.2% $7,778.36 $25,024 $7,778
2.1.5] Air Vehicle IAT&C IAT&C $16,269 347,265 13.3% $8,516.01 $24,785 $8,516)
2.2 System Engineering SysEng $12,000 71,063 2.7% $1,742.69 $13,743 $1,743]
2.3 Program Management PM $10,000 79,683 3.1% $1,954.08 $11,954 $1,954
2.4 System Test and Evaluation  [STE $5,000 15,536 0.6% $381.00) $5,381 $381]
25 Training Trg $4,193 89,994 3.5% $2,206.93 $6,400 $2,207|
2.6 Data Data $4,193 106,965 4.1%) $2,623.10 $6,816) $2,623
2.7 Peculiar Support Equipment  |PSE $7,634 30,165, 1.2% $739.73 $8,374 $740
2.8 Initial Spares and Repair Parts | InitalSpares $15,451) 333,808 12.8% $8,186.01 $23,637| $8,186)

Figure A-15 The Need Allocation Process

A.12.3 Comparing Three Allocation Methods

Figure A-16 compares three methods: Allocate by standard deviation, Allocate by standard deviation
adjusted for correlation and the Needs method. Figure A-16 is evidence that for this model, any of the
approaches are reasonable. Consequently, the simplest (Section 3.6) to implement is the recommended
approach.
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Compare Allocation Methods on EMD
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Figure A-16 Comparing Three Allocation Methods On 85% TY $K

A.130OBLIGATIONS VS. EXPENDITURES

Building ships, aircraft, or missiles is expensive and takes place over a considerable amount of time.
Multiyear funds grant authority to spend money appropriated in one year over a period of years. This is the
origin of outlay rates, which provide a profile of how money appropriated (obligated) for a program may be
spent over time according to the type of program. Some appropriations, such as Military Pay, Civilian Pay,
and Fuel, are assumed to be spent 100% within the year of appropriation. Other categories, such as ship
acquisition, are allowed to be spent (pay an invoice) over a period of up to seven years. In this context,
outlays rates are used to estimate the total dollars required to account for inflation. Since budgets are
expressed in obligations, cost estimates to support the budgeting process must be in terms of obligations.

Further complicating the landscape is that:

e Appropriated funds may be available to be obligated (put on contract) for several years. Thus
appropriations are often referred to as one, two or three (or more) year money

e Contractors collect costs as they are accrued (as work is performed). This forms the basis for
contract cost reporting to the DoD. These accruals represent actual or estimated unpaid liabilities for
the DoD. However, the accruals may be quite different from the contractor vouchers submitted to
and the funds (outlays) paid by the DoD.

e Incremental payments (expenditures) may or may not match the actual work performed and will often
lag the reported work, especially if there is a dispute over what work has been performed.
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The Comptroller of the Office of the Secretary of Defense (OSD) releases inflation guidance (Reference 79)
between January and March of each year. This guidance includes the outlay rates (profile) for each DoD
appropriation. Table A-16 contains some of the outlay rates published in February 2012. The Navy
RDT&E and Weapons rates are used in the example model for this handbook.

Table A-16 FY13 President’s Budget Outlay Rates

FIRST SECOND THIRD FOURTH FIFTH SIXTH SEVENTH
YEAR YEAR YEAR YEAR YEAR YEAR YEAR

RDT&E

Armv 14.55 56.53 2235 368 197 092

II\'av_v 35.96 52.03 934 1.33 134

Air Force 52.90 36.64 5.23 3.14 1.05 1.04

Defense Wide 43.36 3.25 71.21 412 1.03 1.03

Dir OT&E 55.00 36.20 6.00 1.80 1.00

Procurement - Navy
INu-_v Ajrcraft 1300 3500 26 50 14 00 700 100 150 |
| Navy Weapons 20.00 32.00 27.00 12.00 5.50 2.00 1.50 |
Navy Shipbuilding 8.00 28.50 22.00 15.00 12.00 9.00 5.50
Navy Ammunition 9.00 39.00 27.50 12.00 7.00 4.00 1.50
Navy Other 23.00 35.00 17.00 10.00 8.00 5.00 2.00
Procurement MC 12.00 35.00 25.00 13.00 7.00 8.00

The outlay rates can be used to develop an implied expenditure profile from the estimated obligation profile.
Table A-17 demonstrates this by applying the Navy Weapons outlay rates to each year of the example
estimate Then Year (TY) results. Note that the dollars of the implied expenditures are in the year in which
they were expended (same year dollars, SY) and they sum identically to the TY result. To obtain a constant
year total, each year of the expenditure would be adjusted by the raw inflation (not the weighted) to convert
from each year to a specific base year.

The Army performs this calculation different from the Navy and Air Force. The method the Army uses
assumes that the outlay rates are applied then the obligation profile is expressed in constant dollar terms. The
method the Navy and Air Force use assumes that the outlays are applied to the then year obligation profile.

Table A-17 Converting an Obligation Profile to an Expenditure Profile

Total FY 2019 |FY 2020 |FY 2021 [FY 2022 |FY 2023
Prod Obligations TY$ |$179,872| $39,472 [$44,411 | $43,924 [$43,936 | $8,129
Navy WPN Outlay SY$ |Total FY 2019 [FY 2020 |FY 2021 |FY 2022 |FY 2023 |FY 2024 |FY 2025 |FY 2026 |FY 2027 |[FY 2028 |[FY 2029
Implied Expenditures | $179,872 $7,894 | $21,513 | $33,654 | $39,570 |$35,045 | $22,967 | $11,363 $4,937 $1,985 $822 $122
2019 Obligation Outlay $7,894 [$12,631 | $10,657 | $4,737 | $2,171 $789 $592
2020 Obligation Outlay $8,882 [$14,212 | $11,991 [ $5,329 $2,443 $888 $666
2021 Obligation Outlay $8,785 | $14,056 |$11,859 $5,271 $2,416 $878 $659
2022 Obligation Outlay $8,787 [$14,060 [ $11,863 $5,272 $2,416 $879 $659
2023 Obligation Outlay $1,626 $2,601 $2,195 $975 $447 $163 $122

The Table A-17 example should not be confused with the contractor plan to perform the work. The example
is an estimate of how the government may pay (outlay) for the project, not how the work will be performed.

A.14CISM BEST PRACTICE CHECKLIST

The methods and processes in this handbook are designed to be tool independent. The best practice checklist
provided here will include some tool specific recommendations based on the behaviors of the latest versions
of the tools at the time.
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e Data

o
o

Uncertainty parameters should be data-driven rather than subjective

Distribution shapes should be selected based on data rather than subjective.

e Simulation Preferences

(0]

(0}
(0}

Simulation settings such as type (Monte Carlo vs. Latin Hypercube), sampling, random seed,
correlation on/off and others may not be saved with the model file. These and similar settings
will have an impact on the simulation results. Establish a standard for these settings and verify
they are correct in the model.

Ensure correlation is enabled

Agencies are encouraged to publish recommended settings for each tool that is used.

e Defined Distributions

(0]

Try to define all uncertainty distributions in a single location within the model. This will simplify
review and the application of correlation.

Create logical, concise names for all defined distributions to facilitate building of correlation
matrices and understanding reports Consider standardizing naming conventions such as: Prefix
to identify phase, UpperLowerCase to make names easier to read, suffix to identify type (Rate,
Wgt, Factor, Etc). Examples: EMDeSLOC, ProdAirFrameWgt, OSLabRate.

In the absence of better information, use lognormal where the point estimate is the median and the
upper bound is the 85% as the default. If the distribution is known to be left skewed, use
betaPERT as the default. Refer to Table 2-2 for guidance on when to use other distributions

Treat subjective bounds as low and high at 15/85% unless there is evidence to do otherwise.
Adjust for skew

Truncate distributions at zero unless there is evidence to do otherwise
Apply uncertainty to the learning curve relationship as a whole rather than its parts (T1 and slope)

Use lognormal with the median as the point estimate and 85% value to define 3™ party tool
uncertainty results in your own model if more precise methods are unavailable

Distribution parameter values should be visible on the spreadsheet and linked to the distribution
definition.

Use Crystal Ball Cell preferences to ensure assumption comments are enabled

Ensure Crystal Ball (cell preferences) and @Risk (RiskStatic) leave cell contents alone, rather
than replacing them with the mean or median,

e Correlation

(0}
(0}
(0}
(0]

Measure correlation present in the model first then determine what should be applied
Create a few large correlation matrices rather than many small ones
Use a minimum of 0.3 as the default

Consider negative correlations where it makes the most sense

e CISM Model Features

(0]

Be able to easily switch off the schedule uncertainty, risk register and correlation in order to
investigate the impacts of these key aspects of the model. Additionally, in order to move cost and
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uncertainty data to a FICSM model, it will be necessary to generate CISM results with schedule
and risk register contributions removed.

e Forecast cells
0 Follow the same naming conventions as used to name uncertainty distributions

0 Report the simulation results (trials, mean, standard deviation, coefficient of variation,
probabilities every 5%) on the same sheet, ideally just to the right of the forecast

0 Perform a convergence analysis to verify the number of trials required to develop a stable
result

e Reports

0 Use multiple methods (Pareto, Tornado, Sensitivity, etc.) to identify cost, duration and
uncertainty drivers. These reports are powerful for exploring the model within the estimating
team, but should only be in backup to support a brief description of the drivers to decision
makers.

0 S Curves should report CV, point estimate and mean. X-axis range should be fixed when
comparing two or more S-curves.
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A.15GLOSSARY

ACAT Acquisition Category

ACE Automated Cost Estimator

ACEIT Automated Cost Estimating Integrated Tools
AFCAA Air Force Cost Analysis Agency

BY Base Year

CARD Cost Analysis Requirements Description
CB Crystal Ball

CDF Cumulative Distribution Function

CER Cost Estimating Relationship

CGF Cost Growth Factor

CGPF Cost Growth Potential Factor

CISM Cost Informed by Schedule Method
COCOMO Constructive Cost Model

CR Cost Reserve

CRUH Cost Risk and Uncertainty Handbook
CSRUH Cost/Schedule Risk and Uncertainty Handbook
Cv Coefficient of Variation

df Degrees of freedom

ECO Engineering Change Order

eSBM Enhanced Scenario Based Method

EVM Earned Value Management

FY Fiscal Year

GERM Generalized Error Regression Model

IC CAIG Intelligence Community Cost Analysis Improvement Group
IRLS Iteratively Reweighted Least Squares
LOLS Ordinary Least Squares, Log Space
MDA Missile Defense Agency

MPE Minimum Percentage Error

MSE Mean Squared Error

MUPE Minimum Unbiased Percentage Error
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OLS Ordinary Least Squares

NCCA Naval Center for Cost Analysis

PDF Probability Density Function

PE Point Estimate

PF Ping Factor

PI Prediction Interval

PS Protect Scenario

QAIV Quantity as an Independent Variable
SBM Scenario-Based Method

SE Standard Error

SEE Standard Error of the Estimate
SEPM Systems Engineering and Program Management
SME Subject Matter Expert

SRA Schedule Risk Analysis

Std Dev Standard Deviation

SW Software

TY Then Year

WBS Work Breakdown Structure

ZMPE Zero Bias Minimum Percent Error
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APPENDIX B FULLY INTEGRATED COST AND SCHEDULE METHOD

B.1 OVERVIEW

Cost, schedule and risk assessments traditionally have been performed by separate teams of professionals. In
recent years, it has become more common for the cost analyst to report a risk-adjusted result as a budget
recommendation, rather than a point estimate. However, it appears that cost uncertainty models routinely
fail to account for two key components of an integrated estimate:

e Associate a risk-adjusted cost result with an associated schedule (that is, the risk-adjusted result is too
often forced into point estimate schedule)

e (Capture the impact of the risk register

A fully integrated cost and schedule method (FICSM) is a disciplined, systematic and repeatable process to
integrate three critical pieces of information: cost uncertainty, schedule uncertainty, and the risk register. For
a variation on the approach described here, see Reference 69.

B.2 SCHEDULE NETWORK

Before embarking on the process of building a FICSM model, we will review some key aspects of a schedule
model. Cost analysts work with models where the total of interest is the sum of all the subordinate tasks.
The units are dollars, a tangible commodity that can be spent or held back. A schedule is not a list of
activities where the durations sum. It is a network of activities arranged in sequence and parallel where the
commodity is time. Time cannot be saved and redistributed later. A parent task duration is not the sum of its
sub-tasks, but equal to the longest of the various paths that define its completion.

A task, project, or program schedule is constructed from a number of specific individual activities,
interrelated among themselves in complicated ways and is called a network. In general, each activity in the
schedule will (or should) have:

e Predecessors: a task whose start or finish date determines the start or finish date of its successor.
e Successors: a task whose start or finish date is driven by its predecessor task(s)

A schedule is a listing of activities, each with predecessors, a duration and successors. Other common
terminology includes:

e Baseline: At a specific point in time, saving all the task start and finish dates to serve as the reference
point for tracking progress and as the basis for calculating EVM metrics. Tools generally provide a
means for saving multiple baselines as the project progresses.

e Critical Path: Longest slack-less path to completion.

0 Microsoft Project lists every task in the schedule that has zero free float. Some of these tasks can
slip without affecting the overall project duration.

0 Primavera Risk Analysis only reports those tasks with zero free float on the longest path to the
end of the project (there is an option to report the same way that MS Project does).

e Free Slack (float): Where a task has more than one immediate predecessor, free slack (also called
free float) is the amount of time an activity can slip without impacting its successor start.

e Hammock: a special type of task within a schedule that is dependent on external dates for both its
start and finish dates and, ultimately, its duration.
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e Hard Constraint: A constraint that prevents the calculated schedule from being pushed beyond a
specific date for the task. Examples of hard constraints include: Must-Finish-On, Must-Start-On,
Start-No-Later-Than, and Finish-No-Later-Than. These should be avoided and for the simulation,
hard constraints should be removed.

e Integrated Master Plan (IMP): An event-based, top level plan consisting of a hierarchy of program
events, with each event being supported by specific accomplishments, and each accomplishment
associated with specific acceptance criteria to be satisfied for its completion.

e Integrated Master Schedule (IMS): Flows directly from the IMP, creating the task and calendar-
based schedule that illustrates the interrelationships among events, accomplishments, criteria, and
tasks.

e Lead/Lag: A lead will cause the successor to start or finish earlier and lag causes the successor to
start or finish later than it otherwise could. It is a discouraged practice because it tends to be misused.
Where a lag is required, the better practice is to create a task called “margin” to replicate the intent of
the lag.

e Merge Bias: This occurs when two or more uncertain, parallel paths of activities merge at one
milestone. The effect is that the expected completion date for the milestone, in this situation, will be
later than the expected completion of the individual paths leading up to it. The number of merging
parallel paths and the level of overlap between them produce an increasing merge bias impact to the
schedule.

e Milestone: An event, phase gate or key accomplishment with zero day duration.

e Relationships: These identify how tasks or activities are linked together: Finish to Start is by far the
most common and the best practice. Start to Start is also commonly used, but it tends to make it
harder to understand the logic. Finish to Finish is known to be useful, but is discouraged because
predecessor logic can become hidden.

e Summary: A higher level roll-up of related detailed tasks.
e Total Slack (float): Amount of time an activity can slip without impacting the project end date.

e Soft Constraint: A constraint that does not prevent the schedule from being changed based upon its
dependencies. Examples of soft constraints include: As-Soon-As-Possible, Start-No-Earler-Than,
and Finish-No-Earlier-Than.  As-Soon-As-Possible (ASAP) is the default in most scheduling
applications.

e Planning Package: A higher level representation of the WBS activities for cost account visibility.
e Task: An activity with duration that is commonly used to represent work items.

e Time Independent (TI)’: elements whose costs are not impacted by the duration of the task they are
loaded against.

¢ Time Dependent (TD): elements whose costs are a function of the duration of the task which they
are loaded against.

e Work Package: Lowest level of the WBS where both the cost and the duration can be reliably
estimated.

" TI and TD are also known as “fixed” and “variable” costs respectively.
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B.3 OVERVIEW OF THE FICSM MODELING PROCESS

FICSM begins with a model of the schedule logic. This serves as the backbone for the integrated analysis.
Cost, risks and uncertainty are mapped into the schedule network logic to assess impacts. In general, a
project/program IMS is unsuitable for this role because it is often too big and complex. Additionally, there
may be network logic or constraints in an IMS that are unsuitable for the uncertainty simulation to run
properly. For example “Must finish on” constraints may be used to generate a suitable IMS, but must be
removed to perform a simulation.

A FICSM appropriate schedule must be created from available data (including the program IMS) and this is
typically referred to as an “analysis schedule”. Key elements of an analysis schedule include:

Captures the major work-flows of the project IMS

Provides insight into major cross-dependencies within or across management responsibility
boundaries

Creates a solid framework to capture cost / schedule uncertainties and discrete risk events
Structured around management/ budget responsibility

Aligns the effort and schedule to the cost/budget

Identifies key tasks that support major deliverables/ tracking items

Detailed IMS step-by-step work items and task flows are combined while maintaining critical path
logic

Has traceability and transparency to the more detailed IMS

Figure B-1 is an example of a simple analysis schedule where uncertainty is applied to the task durations.
While triangular distributions are shown, the analyst may use any type of distribution suitable to model the
duration uncertainty.

Most
g . Likely Days
S —
Min Days Max Days

Project
Start _ Duration =
~  Uncertainty Pro}ec .

End

Probability

Y
Task Duration

Figure B-1 Simple Schedule Network With Uncertain Task Durations

The next step is to assign time independent (Tl) and time dependent (TD) costs to each of the activities.
Figure B-2 illustrates mapping of uncertain TI and TD costs to each activity. The final activity only has a
TI cost associated with it. The previous activities have both TI and TD cost components.
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It is a common practice to combine similar activities together to assign the TD cost. This is known as a
summary hammock task. For instance, a schedule network may contain several specific activities that
together are related to a single WBS element cost estimate. The hammock task is tied to the beginning of the
first activity in the series and the end of the last. There could be a large complicated network of sequential
and parallel activities in between. The TD cost needs to be expressed in dollars per unit time so, as the
activity duration changes, so does the total cost for the activity. There are several considerations to keep in
mind when building uncertainty into TD costs:

Profect Start

% e
( T A\

N TD S = Segment Duration X Burn Rate

Hammock tasks need to be added to the schedule, without changing the behavior of the schedule, in
order to assign the TD cost.

The basis for the TD cost uncertainty, transferred to the FICSM model, may have already captured
some degree of duration uncertainty.

Ti = Time-Independent Cost, e.g., Materials

Probability

Hammock Task ) Min Days Max’Days

T $}Uncertalmv Duration Uncertainty ! ﬂ?‘
- M

14a3un

Project

\ y
h 4
Task Duration
Hammock Task
\\ _ : [= /
N\ TD S = Segment Duration X Burn Rate ; Burn Rate
X . » Uncertail

TD = Time-Dependent Cost, e.q.. ‘marching army’ cost ity

Figure B-2 Simple Schedule Network With Mapped TI and TD Costs

Finally, it is necessary to map risk register events into the network. These events will have a cost and/or
schedule impact on one or more tasks if the risk is realized. Figure B-3 illustrates how a risk register item is
embedded into the network. Note that, as constructed:

The event will have no impact on the schedule or cost if it does not occur.
The probability of occurrence defines how often in the simulation this event occurs.
An additional, uncertain TI cost is realized if this event occurs.

Since it is captured within the TD hammock, when the event occurs, the duration that it adds to this
sequence of events will result in higher total TD cost.

This particular implementation does not affect the already-defined TD burn rate, only the duration
over which the TD rate is applied.
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TI = Time-Independent Cost, e.g., Materials
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Figure B-3 Simple Schedule Network With A Risk Register Event Included

It is generally easier to map cost model results to a schedule model rather than replicating schedule network
logic in a cost model. However, schedule models (tools) are generally populated with throughputs, that is
they don’t allow equations to estimate the cost of one task based on the cost of another task or the technical
characteristics of the task. Consequently the CISM model is still necessary as it can be used as the source for
the cost and cost uncertainties that must be mapped to the schedule. Mapping cost estimate results to a
schedule model is simplified by:

e Unifying cost (often product-based) and schedule (often task-based) work breakdown structures
e Specifying Time Dependent and Time Independent costs and their uncertainty separately
e Defining how the TI or TD cost is phased over the task duration

Uncertainty should be applied in a consistent manner across the entire model and then correlation must be
considered.

B.4 BUILDING A FICSM MODEL

B.4.1 A Consolidated View of the Process

The following steps provide a high-level process for incorporating cost uncertainty, schedule uncertainty and
the risk register into a fully integrated model. Figure B-4 illustrates a tool independent overview of the
FICSM process. There are many tools available to perform this modeling and analysis. Unlike the tools to
perform cost simulation, they are not as mature and there are many subtle but highly significant differences
in how these tools implement the process. Appendix Error! Reference source not found. describes a few of
the available tools and some of their differences. We selected one of them to demonstrate the process.
While it may be evident from the images used which tool was selected, this handbook does not directly
identify it and leaves it to the analyst to make a selection.
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Figure B-4 The FICSM Process

B.4.2 Starting the Process: Collect Schedule Data

Whether building a schedule from scratch or condensing an IMS into a useable analysis schedule, it is

>
7

important to first gather key pieces of information that will aid in the overall understanding of the project.

Many times when building a new schedule the first instinct is to open Microsoft Project, or other scheduling
tool, and start entering data. This is rarely a good idea, and instead leads to non-integrated pieces of data that
don’t tell the whole cohesive story of the project from beginning to end. Table B-1 identifies some key

pieces of information for the example model.

Table B-1 Typical High Level Schedule Data

Item Point Estimate Range
WBS Structure Mil-881C

EMD

Possible Project Start Date 01 Oct 2013

Project Start Date Delay 2 months 0-18
Modeled Project Start Date 01 Dec 2013

EMD Duration 60 months 54 -72
EMD Prototypes 5

EMD LOE tasks Design, PM, & SE

EMD End Date 01 Dec 2018

Production

Production Start Date — is EMD End date

Production Qty 600 Units

First Year Production Qty Driven by EMD End Date

Steady State Production Qty 150 per year 105 - 165
Final Year Production Qty Steady State Rate - First Year Production
Production LOE tasks PM & SE

Production Duration Total Qty/Steady State Rate * 12 Months
Production End Date EMD End date + Production Duration
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B.4.3 Creating an Analysis Schedule Suitable for the FICSM Process

Ideally, FICSM will be based on the IMS for the project. Many analysts choosing to build a FICSM model
will quickly find out that neither the IMP nor IMS has been developed. The schedule for the project may be
nothing more than a few bullets on a single slide. On the other end of the spectrum will be projects in
execution that have fully developed IMP and an ever changing IMS with a huge number of interrelated
activities rendering it problematic for use in the FICSM process. In both situations, the FICSM analyst may
have no choice but to build a schedule that adequately captures the anticipated workflow and activity
interrelationships. This step begins by defining the key elements of the overall plan as discussed in the
previous section. Further discussion of the IMP and IMS can be found in Appendix A.1.9. Also, Reference
82 documents lessons learned from building an analysis schedule in the NASA environment.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 ‘

FY14 FY15 FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23
M 11EMD [ contfact s 1l Pryd K Final Review
Major Decision Awa 52 PDR COR D;“"* k1 bt brod and Delivery
Milestones * | X * Jontract award
EMD Production
Major Phases
Detailed Design |
i System Design| Initial Design
Design and Final Design * 100-Unit * 00-Unit *SDD—UN i{ 400-Unit *suuru it
Development Review evie Review Review [Reviey
Build
HW
Prototype Test proto | MWW pev InteE | 1o} 10p
. = ype Dev| Fit | Flight | Flight [ Fit
Flights & &lnteg | Test| Test |Test1|[Tst2
Proto
Software System Design| Initial Design | Detailed Design | Design Refinement | | |?
* S Y !ntegration * Final SW Dro|
Drop
siLDrop Flight
Test Drop |
. - X Training
Training Develop Training Material
Manufacturing [ tot1 [ tot2 | 1ot3 | lot4 | Lots5 | lLote |
100/100 100/200 100/300 100/400 100/500 100/600

125/125 150/275 150/425 150/575 25/600

Final Final Integ
Prelim Integ Integ and SW
IAT&C Test Test [Test Integ Test Test retro-fit

Figure B-5 Example Model Integrated Master Plan

After a high-level understanding of the project and a project plan from start to finish are achieved (should
look something like Figure B-5), there are a few different approaches to take in building an analysis
schedule. If the WBS elements are self-contained, meaning they do not rely on activities from other WBS
elements to be predecessors to activities within their process, then building the schedule by WBS may be
appropriate. If the activities within the WBS elements are interconnected with activities from others, it may
be better to build the analysis schedule organized around activities. However, when building an analysis
schedule from a cost model, it is easiest to use the WBS as the basis for building the schedule.

Having identified the key activities for the schedule, the next step is to develop the logical relationships.
Logical relationships between activities identify whether they are to be accomplished in sequence or in
parallel. A sequence of activities is a serial path along which one activity is completed after another.
Activities can also be accomplished in parallel. A logic relationship linking a predecessor and successor
activity can take one of three forms: finish-to-start (F-S), start-to-start (S-S), and finish-to-finish (F-F).
Additionally, there can be leads or lags built into these relationships.

F-S relationships are preferred because it is intuitive, it is common for work to be accomplished serially, it is
easier to trace and they clearly indicate to management the work flow. S-S and F-F relationships, in contrast,
imply parallel or concurrent work. S—S and F-F relationships represent a valid technique for modeling
overlapping activities and may be more predominant in schedules that have not yet evolved to a detailed
level.
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In summary, an analysis schedule:

is not an IMS or a detailed schedule
is not a detailed step by step description of the detailed activity flow
has traceability and transparency to more detailed IMS and other schedule products

has the objective to enable an integrated cost and schedule modeling and simulation environment that
is structured around management/ budget responsibility

displays major work-flows of a project

identifies work required to support major deliverable / tracking items
allows linkage of budgeted work effort to schedule scope

facilitates alignment with EVM generated data

provides insight into major cross dependencies within or across management responsibility
boundaries

creates a framework for incorporating cost / schedule uncertainties and risk register events

Figure B-6 illustrates how the example CISM model compares to an analysis schedule developed in MS
Project to support a FICSM analysis. Starting from the cost WBS, the analysis schedule differs by:

adding the ability to make the start date uncertain
including milestone dates

consolidating level of effort tasks

rearranging to make more sense in the schedule linkages

requiring a lot more detail as we will see in the following examples with arrows

Name Duratior
~ Missile System Project 2348 days
' Contract Award Delay 45 days
T Missie System Modeled Contract Award 0 days
- Z Engineering and Manufacturng Development |~ Engineering and Manufacturing Development 1305 days
-~ X AirVehicle *+ Hardware Design and Development 880 days
gesngn % Development + software 1305 days
Tototypes
Soltware v Prototype HW/SW Integration Build 180 days
System Engneering * EMD System Test and Evaluation 200 days
Program Menagement * Training Development 1305 days
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Figure B-6 Compare the Example Cost WBS to the Analysis Schedule
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B.4.4 Estimating Activity Durations

Estimating the duration for the PEg will set the stage for the duration uncertainties to be entered later. There
are several approaches for estimating the activity duration, and each should be based upon data analysis
whenever possible:

e Mean Duration: A common approach is to examine historical tasks and use the average as the point
estimate.

e Three Point Estimate: Another common approach is to identify the minimum, most-likely and
maximum duration for the activity and use the most-likely as the point estimate. When obtained
subjectively, the adjustment for skew as discussed in Section 2.5.4 should be considered.

Other terms are used like “the most realistic” duration, which presents problems when determining how to
apply uncertainty. Most realistic is not the same as the mode or the mean. It is some other interpretation
adding another level of subjectivity.

The duration estimate should take into account the nature of the work and the resources needed to complete
the activity. The AACEI Recommended Practice 32-04: Determining Activity Durations suggest the
following guidelines for estimating activity durations:

e Duration = Quantity of work / work units per time period. Quantity of work is a function of the
definition or scope of the activity. Work units per time period are commonly referred to as the
production rate.

e Duration is typically specified in rounded continuous working time periods in the unit common to the
activity, e.g. hours, days, weeks, months, years, etc. Generally, durations are rounded up to the next
whole unit, even when the estimated duration is less than 2 a work unit (e.g., if estimated duration
calculates to 60.25 work days, it is rounded up to 61 work days).

e There are some activities which need to be measured in calendar time periods rather than working
time periods.

e Durations should be estimated using an analytical and systematic method.

e The basis of activity duration estimates should be identified as a part of the overall schedule
documentation.

B.4.5 Capturing the Impact of the “Standing Army” Using Hammock Tasks

Level of effort (LOE) tasks incur a steady expenditure rate that is expected to be in operation over a period
time. If the task ends early, it will cost less. If the task runs longer, it will cost more. Project management
and systems engineering were modeled in this manner given that it is reasonable to expect the need for these
services while the project is in execution. This gives rise to the concept of “standing armies” which are
resources that cannot be terminated due to delays in other areas of the project. Figure B-7 illustrates how
these tasks are implemented in the analysis schedule. They each have a subordinate milestone start and
finish that are linked to the associated activities that define the start and the end of the EMD phase. A
similar construct is created in production. By doing this, the cost/day for these resources can be assigned to
the hammock task and produce a total task cost that is sensitive to the duration of all those tasks that will
define the EMD critical path.
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Figure B-7 Implementing Hammock Tasks in the Example Model

B.4.6 Build the Schedule and Perform a Health Check

After identifying the logic relationships and the durations, it is time to build the schedule in the scheduling
software. There will be choices to make when organizing the tasks. Some analysts like all the milestones to
be prominent at the top of the schedule so they are easy to find. However, this makes it hard to visualize the
linkages. Embedding the milestones directly after its last predecessor makes the linkage easier to read (see
PDR and CDR in Figure B-7) but this could create confusion when looking at the list. A third option is to
group the milestones as shown in Figure B-8. Figure B-8 also illustrates the kind of tasks and the linkages
that need to be built into the model.

Once the schedule is built, it should be checked against the Defense Contract Management Agency (DCMA)
14-point check. A number of statistics must be calculated before starting the check. These statistics are:

o Total Tasks: All the tasks except tasks that represent summary, subproject, level of efforts, zero
duration, or milestones

e Complete Tasks: Tasks among the "Total Tasks" that have 100% completion and with an actual
finish date before the status date.

e Incomplete Tasks: Tasks among the "Total Tasks" that do not have 100% completion and with an
actual finish date before the status date.

e Baseline Count: Tasks among the "Total Tasks" that should have been completed before the status
date in the original baseline schedule.
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Figure B-8 Example Analysis Schedule

After identifying and calculating the previous statistics the checks can be performed. There are third party
tools that specialize in performing these types of checks. A brief summary of the 14-point checks is:

Logic: less than 5% incomplete tasks with missing logic links
Leads: no incomplete tasks with a lead (negative lag) in predecessor relationships
Lags: less than 5% incomplete tasks with lags in predecessor logic relationships

Relationship Types: incomplete tasks containing each type of logic link. At least 90% should be
Finish-Start. Start-Finish should be as close to zero as possible.

Hard Constraints: less than 5% of incomplete tasks contain hard constraints in use (such as Must-
Finish-On, Must-Start-On, Start-No-Later-Than, and Finish-No-Later-Than)

High Float: less than 5% of incomplete tasks with total float greater than 44 working days (2
months)

Negative Float: no incomplete task with total float less than 0 working days

High Duration: less than 5% of incomplete tasks with a baseline duration greater than 44 working
days (2 months)

Invalid Dates: no incomplete tasks that have a forecast start/finish date prior to the IMS status date,
or have an actual start/finish date beyond the IMS status date

Resources: all tasks with durations greater than zero have dollars or hours assigned

Missed Tasks: Less than 5% of activities that had a scheduled finish date before the status date but
did not finish or are forecast to finish after the baseline finish date. This check is important because
it shows how the updated schedule is in compliance with the baseline schedule
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Critical Path Test: Tests the integrity of the overall network logic and, in particular, the critical
path. It is one of the two “trip wires” that are required by the OSD (Office of Secretary of Defense).
The "critical path test" is performed by adding an intentional delay (600 working days) to the
remaining duration of a critical task and then checking to see if the project completion date is
delayed by a proportional duration (600 working days). By adding such a delay, any missing
predecessor or successor will lead to a mismatch between the project overall delay and the intentional
one. The "critical path test" will be passed if there is a match between the project completion delay
and the intentional added duration.

Critical Path Length Index (CPLI): Used to assess if the project finish date will be real or not. It is
one of the two “trip wires” that are required by the OSD. The CPLI is calculated by adding the length
of the critical path to the total float of the latest activity and dividing the sum by the length of the
critical path. For the CPLI to be acceptable, its value should be more than 100%

Baseline Execution Index (BEI): An IMS-based metric that calculates the efficiency with which
tasks have been accomplished when measured against the baseline tasks. If the contractor completes
more tasks than planned, then the BEI will be higher than 1.00 reflecting a higher task throughput
than planned. A BEI less than 0.95 should be considered a flag and requires additional investigation.
This test computes the ratio of all of the tasks that have been completed versus the tasks that should
have been completed in the period between the Baseline Schedule and the current schedule.

B.S LOADING THE SCHEDULE WITH COST

B.5.1 Strategy to Load Cost Data

There are several decisions to make regarding the approach to cost loading the schedule model. Ideally, the
CISM and FICSM point estimate cost and durations match. Also, the total cost uncertainty for both the
CISM and FICSM should approximately match before schedule uncertainty and risk register influences are
added to the FICSM model. If a CISM model is used as the source for the data, the documentation and basis
for much of the FICSM model is already available. To construct the example FICSM model, we used the
following process:

Basis for the FICSM point estimate:
0 Cost: we chose to use the point estimate from the CISM model that is based upon the PEs.

0 Schedule: to be consistent with the point estimate cost, the PEg durations derived from the CISM
model are used.

Mapping cost to a FICSM model:

0 Mapping WBS to activities: The approach for performing this mapping (often one WBS element
to many activities) is determined on a WBS element by WBS element basis.

0 Mapping CISM cost to TI and TD: We chose to use the CISM model as guidance for assigning
these costs.

Mapping CISM cost uncertainty to a FICSM Model:
0 Run the CISM with the risk register disabled

0 Review selected histogram results from the CISM model to determine distribution shape.
Develop consistent approach for determining the shape parameters. Enter the parameters as a
percent of the point estimate to preserve CV.

0 Match the CISM model correlation for cost uncertainties in order to match (or get close) at the
total level before schedule uncertainty and the risk register is applied.
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e Assign duration uncertainties: similar process to cost

e Apply the risk register

e Apply correlation

e Perform a health check: Before running the simulation, check for issues with the model. This is a
more important and more complex process than a similar check for a CISM model.

e Run the model and develop reports

B.5.2 Collect Cost Data

A properly developed and documented CISM model is a good source of the cost and cost uncertainty
information required for populating the FICSM model. However, it is important that the CISM model is
configured to permit schedule uncertainty and risk register elements to be disabled. Use this capability to

generate results from CISM model for use as inputs to the FICSM model.

Table B-2 compares key results from the CISM example model. These are not the allocated risk dollar
results that would be used to propose a budget.
simulation for cost uncertainty only. The TY statistical results are shown for reference, but would not be
used to populate the FICSM model.

Table B-2 Example CISM Model Estimate Risk and Uncertainty Statistical Results

Rather, these are the statistical results direct from the

Point Estimate
(%) =

Program Estimate Results From
Complete CISM Model

Program Estimate Results From
No Schedule Uncertainty or Risk Register

WBS Probability of PE Mean Std Dev CcVv 50% 85% Mean Std Dev CcV 50% 85%
Missile System TY$ $ 276,893 (15%)| $365,333| $78,884| 0.216 $353,524| $439,934 $338,615| $62,843| 0.186 $330,567| $400,359
EMD TY$ $ 88,102 (16%)| $140,417| $52,654| 0.375 $130,228| $189,083| $119,952| $36,159| 0.301 $113,205| $153,228|
Production & Deployment TY$ $ 188,792 (19%)| $224,916| $37,027| 0.165 $220,985| $261,913| $218,663| $34,869| 0.159 $214,633| $254,116

* DETAILED ESTIMATE PE Mean Std Dev CcVv 50% 85% Mean Std Dev CcVv 50% 85%
Missile System $ 246,836 (15%)| $325,183| $70,260[ 0.216 $314,740| $391,724| | $302,070| $56,779] 0.188 $294,754| $357,505]
Engineering and Manufacturing Dev $ 83,539 (17%)| $130,683| $47,692| 0.365 $121,567| $174,317 $112,971| $34,025| 0.301 $106,567| $144,172]
Air Vehicle $ 14,944 (29%)| $28,615| $21,080 0.737 $22,954| $44,749 $23,886|] $14,921| 0.625 $20,138| $36,195)
Design & Development $ 12,000 (33%)| $24,380| $20,409| 0.837 $18,752| $39,874 $19,795| $14,287| 0.722 $16,053| $31,387
Prototypes $ 2,944 (23%), $4,235 $1,516] 0.358 $3,975 $5,805] $4,091 $1,452] 0.355 $3,837 $5,597|
Software $ 31,500 (41%)| $44,497| $23,620| 0.531 $39,641| $65,970 $40,302| $22,164| 0.550 $35,269| $60,480
System Engineering $ 17,500 (17%)| $27,113 $8,293| 0.306 $25,693| $35,496 $22,659 $5,078| 0.224 $21,861| $28,639
Program Management $ 15,000 (26%)| $20,528 $5,395| 0.263 $19,672| $26,158 $17,155 $2,813| 0.164 $16,776| $20,436
System Test and Evaluation $ 1,766 (9%) $3,654 $1,683| 0.461 $3,289 $5,267 $3,529 $1,614| 0.457 $3,194 $5,084
Training $ 897 (20%), $2,038 $1,551| 0.761 $1,618 $3,215] $1,701 $1,104] 0.649 $1,413 $2,581]
Data $ 1,196 (20%), $2,714 $2,054] 0.757 $2,156 $4,278] $2,266 $1,469| 0.648 $1,893 $3,456
Peculiar Support Equipment $ 736 (9%) $1,524 $703| 0.461 $1,379 $2,209 $1,472 $675| 0.459 $1,331 $2,135]
$0|
Production & Deployment $ 163,297 (19%)| $194,499| $31,984| 0.164 $191,119| $226,478| | $189,100| $30,121| 0.159 $185,619| $219,735
Air Vehicle $ 104,826 (23%)| $127,291| $25,142| 0.198 $124,490| $152,834| | $122,955| $23,622| 0.192 $120,399| $146,789
Airframe $ 21,651 (35%)| $25,477 $7,692| 0.302 $24,570|  $33,903 $25,477 $7,692| 0.302 $24,570]  $33,903
Propulsion $ 21,849 (32%)| $24,056 $4,541] 0.189 $23,617| $28,319 $24,056 $4,541] 0.189 $23,617| $28,319
Guidance $ 27,810 (27%)| $37,322| $10,274| 0.275 $35,949| $48,294 $32,986 $7,143| 0.217 $32,058| $41,295
Payload $ 17,246 (31%)| $19,607 $4,195| 0.214 $19,204| $23,913] $19,607 $4,195| 0.214 $19,204| $23,913
Air Vehicle IAT&C $ 16,269 (41%)| $20,830| $11,501| 0.552 $18,270| $31,108| $20,830] $11,501| 0.552 $18,270| $31,108
System Engineering $ 12,000 (40%)| $12,442 $1,363| 0.110 $12,347| $13,990 $12,442 $1,363| 0.110 $12,347| $13,990
Program Management $ 10,000 (40%)| $10,369 $1,136] 0.110 $10,289| $11,658 $10,369 $1,136] 0.110 $10,289| $11,658
System Test and Evaluation $ 5,000 (33%) $5,369 $690( 0.128 $5,296 $6,162 $5,369 $690| 0.128 $5,296 $6,162
Training $ 4,193 (10%) $6,587 $1,972| 0.299 $6,295 $8,602 $6,364 $1,885] 0.296 $6,061 $8,323
Data $ 4,193 (10%), $6,036 $1,475| 0.244 $5,855 $7,529 $5,830 $1,396] 0.239 $5,653 $7,221]
Peculiar Support Equipment $ 7,634 (50%), $7,634 $2,039] 0.267 $7,635 $9,747| $7,634 $2,039] 0.267 $7,635 $9,747|
Initial Spares and Repair Parts $ 15,451 (37%)| $18,771 $6,090| 0.324 $17,821| $24,795) $18,137 $5,839] 0.322 $17,257| $23,930

B.5.3 Mapping cost to a FICSM model

There are two steps in mapping the point estimate from a CISM model to FICSM. Before extracting data
from the CISM model, make sure that the point estimate is based upon the PEs. The costs from CISM need
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to be mapped to the appropriate activities and then divided into TT and TD values. Table B-3 illustrates both
steps in a single template. There are many ways to arrive at the factors - the only guidance offered is to
establish a consistent approach that is defendable, repeatable and well documented.

Table B-3 Mapping CISM Costs to a FICSM Model

CISMWBS Element E;?r:;te FICSM Activity Name Rcefmt Factor F'SS Mt T | TDw | s | Tos
Design & Development $12,000 EMD HW Des & Dev $12,000 $12,000
HW Sys Des 10% $1,200 0% 100% $0 | $1,200
HW Initial Des 20% $2,400 0% 100% $0 | $2,400
HW Detailed Des 50% $6,000 0% 100% $0 | $6,000
HW Final Des 20% $2,400 0% 100% $0 | $2,400
Software | $31,500 EMD Software $31,500 $31,500 100%
SW Sys Des 10% $3,150 | 100% 0% $3,150 $0
SW Initial Des 20% $6,300 | 100% 0% $6,300 $0
SW Detailed Des 40% $12,600 | 100% 0% $12,600 $0
SW RR#1 EMD Detailed Des Complications $0
SW Des Refinements 30% $9,450 | 100% 0% $9,450 $0
CISM Data Point | 1¢1csm Activity Name CISM | octor | FCSM | 196 | TD% | T8 | TDs
Estimate Result PE
Air Vehicle $105,839 Prod Mfg $105,838 $105,838
Airframe $21,860 Air Vehicle Minus IATC $89,412
Propulsion $22,060 Procure Materials 40% $35,765 | 100% 0% $35,765 $0
Guidance $28,079 Air Vehicle Manufacturing 60% $53,647 | 90% 10% | $48,282 | $5,365
Payload $17,413 AV RR#2 Prod Guidance Sys Mfg Problem
Air Vehicle IATC $16,426 IAT&C $16,426 | 100% $16,426 | 100% 0% $16,426 $0

B.5.4 Mapping CISM Cost Uncertainty to a FICSM Model

At this point, we have created a schedule using point estimate durations (no duration uncertainty) and
mapped the point estimate costs from the CISM model to the FICSM model. It is recommended that cost
uncertainty be applied before applying duration uncertainty or the risk register. In that way, we can set a
goal to have the FICSM cost uncertainty match, at the total level, the CISM cost uncertainty when schedule
and the risk register are turned off. This provides a point of departure where the models matched under
similar conditions. It will be the last time any such match will be possible.

In general, CERs cannot be used in FICSM models to estimate TI or TD costs. Almost every FICSM tool
requires TI and TD costs to be entered as throughputs. This makes it necessary to create a cost risk and
uncertainty model in order to obtain the convolved cost uncertainty elements for the FICSM model. When
using a CISM model, it is important to turn off schedule and risk register uncertainty in order to obtain the
baseline uncertainty distributions suitable for entry into the FICSM model. It is recommended that you begin
by creating histograms of the associated elements. In most cases, the results will look like the left image of
Figure B-9. Generally the mean and standard deviation will be sufficient to replicate the distribution in the
FICSM model. However, since we have to apply one WBS element distribution to several activities, it is
recommended that the distribution parameters be reduced to factors of the point estimate.
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Figure B-9 Example CISM Cost Histograms
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Using this approach allows us to apply the same relative uncertainty to all activities, TI and TD. The
problem with this approach is that the sum of TI and TD cost uncertainty will not equal the original total cost
uncertainty for that CISM element. There are a few ways to address this issue:

e Find the correlation required using trial and error to make the sum of TI and TD uncertainty match
the total. This is not a satisfactory method as it interferes with correlation to anything else in the
FICSM model.

e Apply the scaled parameters, measure the correlation in the CISM model as a whole and apply it to
the FISCM cost elements.

This recommended approach should achieve our goal of matching the cost uncertainty in the FICSM with the
CISM model (before schedule uncertainty is applied in FICSM). As evidence that such a goal is feasible we
offer Figure B-10 where a CISM estimate of our example model (in Crystal Ball, @Risk or ACE) is
compared to a FICSM estimate in the Joint Analysis of Cost and Schedule (JACS, an ACEIT tool).
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Figure B-10 Comparing Only Cost Uncertainty Between a CISM and FISM Model

B.5.5 Assign the Schedule Uncertainty

To this point, point estimate durations have been entered. A source is required to define the duration
uncertainty. For our example we will draw our information from the CISM model. There are two sources of
duration uncertainty in the example model, each modeled using a triangular distribution as illustrated in
Figure B-11. It is important to ensure that the duration uncertainties obtained from the CISM model do not
include the impact of the risk register as they will be added later.
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Figure B-11 Example Model EMD Duration Uncertainties
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In our case, the EMD PEg is the mode of the duration uncertainty. Often, however, the PEg is in fact
estimated as an average (mean), A common mistake is to treat it as the mode anyway. Unless the triangle is
symmetrical, the mean will not be the same as the mode. It is, however, simple to calculate the mode of a
triangle if the minimum, mean and the maximum are known: Mode = 3*Mean — Min — Max. See Appendix
A.6 for the mathematics of the triangular and other common distributions.

Correctly obtaining the Production duration uncertainty from the CISM (or similar) model requires a
complete understanding of the source model. In our case, the model combines the Production start date
uncertainty with the production rate uncertainty. Figure B-12 illustrates the combined effect. This is not the
data we should use to model Production duration uncertainty in FICSM.
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Figure B-12 Production Duration Uncertainty With the Influence of EMD

Production duration uncertainty was not developed in the example CISM model delivered with this
handbook (as directed). However, in a previous version we explored introducing production duration
uncertainty by creating a production rate variable. Dividing the point estimate production total quantity by a
the point estimate duration for production gave a production steady state (SS) rate. Using an uncertain SS
rate (left image of Figure B-13) we could have the model generate the uncertain duration (12 *
TotalQty/ProdSSRate). The image on the right of Figure B-13 is the result. This is the image we used to
assign duration uncertainty to Production activities in the FICSM model. Note that dividing by a triangular
distribution does not result in a triangular distribution. This is a situation where an empirical distribution
may be appropriate (see Section 2.4.3.6).
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Figure B-13 Converting Production Rate Uncertainty to Duration Uncertainty
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B.5.6 Apply the Risk Register

It is common practice to create the risk register in a FICSM model as a single list to facilitate cross checking
with the risk management team. An alternative is to weave the risk register (RR) items directly into the
schedule model structure. This has two advantages: linkages are easier to see and elements affected by the
RR item are more clearly visible. We used this approach in the example model, but either approach is
acceptable. Two common methods for modeling risk register event include:

e Discrete events: A single RR event may impact many activities. Each impact affects a specific
activity and its successors. The event impacts are built directly into the network and assigned a point
estimate of zero for cost and duration. If the event is triggered, the event takes on an uncertain cost
and/or duration. Modeling risk events in this way is straight forward. Modeling cost opportunities is
slightly complicated since uncertainties are negative numbers. In CISM models, one can simply
model the uncertainty as positive and subtract it from the element in question. Functional
relationships tend not to be available in FICSM models as they are schedule tool based. Modeling
schedule opportunities requires some effort as the affected activity needs to be broken into multiple
segments. Most FICSM tools handle risk events easily. Few, if any, provide a simple way to
implement opportunities in this fashion.

e Risk Driver: This popular method allows a single event to trigger the application of uncertain
factors to one or more activities. It can be looked at as a different way to apply uncertainty. Using a
risk event has the advantage of making it easy to address both risks and opportunities. Its
disadvantage is that tools allowing this method only permit a single factor that may be applied to
many activities (albeit a different one for duration, TD and TI cost). Justifying that the event will
have the identical impact on a variety of activities may be troublesome to defend. Nevertheless, it is
widely used and defined in detail in Reference 72 and 75.

For our example CISM and FICSM model we used the discrete event method as shown in Figure B-14.

Name Duratior Stal
@ A - 2014 [2015 [2016 [2017
Oct I| Jan [ Apr [ Jul [Oct [Jan [ Apr [ Jul [Oct [Jan [Apr | Jul [ Oct [lan [Apr [
12 - Software 1305 days 1| W
13 SW Sys Des 175 days 1 b
14 SW Initial Des 180 days iln H
15 SW Detailed Des 285 days 4] [ —
16 SW RR#1 EMD Detailed D 0 days i £5/16
1w SW Des Refinements 665 days L F:'
18 SDR 0 days 7 8/a
19 PDR 0 days a0 #4713
20 CDR 0 days G ::'E,’ﬂs ]
21 Prototvpe HW/SW Int Build 180 davs 3l i "y

Figure B-14 Inserting a Risk Register Event into the Schedule Network

This particular Risk Register event adds duration to the EMD phase. In the CISM model, this Risk Register
event influenced the EMD duration variable which in turn, was applied to all EMD WBS elements. It is not
that simple in a schedule model. But there is also more flexibility. Every activity that precedes the Risk
Register event is unaffected when it occurs. The events that immediately follow are not affected either since
it is set up with F-S logic. The event adds cost and duration to software development as a total. Other
activities like System Engineering and Project Management will stretch since they are linked to the start and
finish of software. Take care not to double count risks.

B.5.7 The Impact of Applied Correlation on a Schedule Network

Cost models are built on the premise that the total cost is the sum of the lower-level costs. Schedule
networks are built on the premise that the total duration is based on the longest path through the lower-level
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activities. The total of a summary level in a cost model is the sum of the immediate subordinates in the
WBS. The duration of summary task in a schedule, however, is the maximum duration of all the subordinate
tasks, not the sum. There is no simple analytical solution for calculating the mean or standard deviation in
this situation. The table in Figure B-15 emulates a schedule where the total is a summary task with five
subordinate activities; all five durations are uncertain and are running in parallel. The total (summary task)
is calculated by using the MAX( ) function in Excel. The mean and standard deviation are obtained through
a simulation. In the table on the left, the activity duration uncertainties are independent of each other. The
table on the right illustrates the impact of applying correlation. In a cost model, where elements sum,
applying positive correlation across lower-level elements causes the variation of the parent level to increase
and has little or no effect on the parent mean. As shown in the table to the right, the standard deviation does
increase with correlation in a schedule model. However, the mean actually got noticeably smaller.

No Correlation Parameters Simulation 0.3 Correlation Parameters Simulation
. Std . Std . Std . Std
Total is the max Min | Max | Mean Total is the max Min [Max | Mean

Dev Dev Dev Dev
Total 100 159.61 26.69||Total 100 153.50| 30.63
Lognormal 100 40 100.00( 40.00]| Lognormal 100 40 100.00f 39.98
Triangular 100 75 | 200 125.00( 27.00]| Triangular 100 75 | 200 125.00f 27.00
BetaPert 100 75 | 200 112.50| 21.65|| BetaPert 100 75 | 200 112.50| 21.65
Normal 100 35 100.00| 35.00]| Normal 100 35 100.00| 35.01
Uniform 100 75 | 200 137.50| 36.09]| Uniform 100 75 | 200 137.50| 36.09

Figure B-15 Impact of Correlation on Parallel Activities

B.5.8 Apply Correlation

Correlation was applied across the FICSM cost elements in Section B.5.4 as a first, not final application.
Now that all the risk and uncertainty has been applied, it is time to revisit correlation. There are some
interesting aspects of the model to consider.

e Duration and TD Cost: When at least some of the cost is time dependent, we recommend that
correlation between cost and duration be avoided unless there is compelling reason to do otherwise.
For instance, if there is evidence that as duration changes, so should the cost per unit duration (the
cost rate, e.g., dollars/day) then correlation between them may be appropriate.

e TI and TD Costs: Unless there is compelling reason to do otherwise, it is recommended that TI and
TD elements be correlated in a single matrix.

e By Phase: Finally, distinct phases of the schedule should be treated independently. In the example
model, EMD elements were correlated with each other as were Production.
B.5.9 FICSM Model Health Check

The model is complete. But before running the simulation, it is essential to perform at least some validation
checks. We already performed the DCMA checks on the schedule (see Section B.4.6). At this point we
need to revisit these checks plus others to verify uncertainty specifications. Most FICSM tools will provide
for this step and it should not be skipped. The health check tests criteria can be grouped into 10 categories:

e Schedule Software: Check for schedule software issues (e.g. No status date defined)

e Conflict: Check Actual Start Dates or Actual Finish Dates do not conflict with the project Status
Date
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e Linkage and Logic: Check task linkage (e.g. Task with no predecessors)

e Structural: Check the structure of the tasks to ensure validity (e.g. milestone should have 0 duration)
e Constraint: Review activities for constraints on Start and/or Finish Dates

e Status: Check status date against task parameters (start, finish, % complete, etc.)

e Cost Loading: Check the logic and syntax of TI and TD costs loaded onto activities

e Uncertainty: Check syntax of uncertainty applied to task resources (TI cost, TD cost, and duration)

¢ Risk Register Specification: Check the logic and syntax of discrete risk events in the schedule

e Syntax Error: Syntax check on various FICSM inputs (e.g., max is less than mode)

Every FICSM tool provides some measure of health checking over and above the DCMA checks. By way of
an example, the Health Check report from one tool is provided. It is divided into three sections to assist the
analyst in finding and fixing the errors: Summary, Issue Counts, and Issue List. Generally the tools will
provide feedback in a series of reports similar to those shown in Table B-4 and Table B-5. A final report is
not shown that would direct the user to the specific task and error. While it is best practice to clear all errors,
it is common to ignore many of the minor issues flagged by the software.

Table B-4 Example Health Check Report

Project Name: CSRUH Analysis Schedule MSP2010 rev8 21Dec2012_w_shortnames.mpp

Critical JCL Issues

Schedule Status Description Count % of Total
Description Current Improper Specification 0 N/A
Current Start 01 Dec 2013 —
Current Finish 01 Dec 2022 Actual Finish after Status Date 0 0%
Estimated Workdays Remaining 2584 Actual Start after Status Date 0 0%
Is this schedule is linked to other schedules? N Actual Finish Task with Uncertainty 0 0%
Resource Loaded (Y/N) N -
Satus Date 05 Jan 2013 Summary Task with Successor 0 0%
Summary Task with Predecessor 0 0%
Task and Milestone Count  (Note: excludes summary tasks) Tasks with Zero (0) Duration Containing Cost specificati 0 0%
Description Count % of Total TD Cost and no Spending Profile 0 0%
Total Tasks and M'Iesmhes 40 Tl Cost and no Spending Profile 0 0%
Completed Tasks and Milestones 0 0% - - - -
To Go Tasks and Milestones 20 100% Tasks marked as Milestones with Cost Specification 0 0%
Tasks with Time-Independent (TI) Cost Specified 15 38% Risk Missing Uncertainty Declaration 0 0%
Tasks with Time-Dependent (TD) Cost Specified 20 50% Risk Missing Prob of Occurrence Specification 0 0%
Tasks and Milestones with Estimated Duration 0 0% Risk with Prob of Occurrence <0 0 0%
Tasks and M?Iestones W?thout Predecessors* 1 3% Risk with Prob of Occurrence >1 0 0%
Tasks and Milestones Without Successors* 13 33% Risk with Relative Duration U rtaint
Summaries with Logic Ties 0 0% ?s W? elal fve uration nc? anty 0 0%
Constraints (other than ASAP)* 1 3% Risk with Relative Cost Uncertainty 0 0%
* These counts exclude summary and started/completed tasks Risk with TD Cost Specification 0 0%

Breakdown of Schedule Issues by Category

Description Warning Info
Count j of Tota| Count f of Total’

Project 1 3% 0 0%
Conflict (potential or actual) 0 0% 0 0%
Linkage and Logic 14 35% 0 0%
Structural 0 0% 27 68%
Constraint 1 3% 1 3%
Status 0 0% 0 0%
Cost Loading 1 3% 1 3%
Uncertainty Specification 0 0% 1 3%
Risk Specification 0 0% 0 0%
Syntax Error 0 0% 0 0%
Uncategorized 0 0% 0 0%
Total 17 30

* These percentages may exceed 100% due to multiple issues reported on single task
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Table B-5 Example Health Check Issue Counts Report

Issue Category | Severity [ Count Tasks
No Status Date Defined Project Warning 1 -1
Constraint Defined Constraint Info 1 3
Task With Soft Constraint Constraint Warning 1 3
Task With No Predecessors Linkage Warning 1 3
Short Total Float Structural Info 19 3,4,5,8,9,10,13,14,15,17,18,19,20,43,45,47,50,63,71
Task Without Correlation Uncertainty Info 1 4
Long Total Float Structural Info 8 11,21,23,24,25,26,60,62
Task With Uncertainty Missing TD Cost [Cost Loading Info 1 21
Task With No Successors Linkage Warning 13 27,30,33,37,40,51,54,57,62,63,65,68,71
Hammock Without TD Cost Cost Loading | Warning 1 33

B.6 TYPICAL FICSM MODEL REPORTS

B.6.1 Overview

FICSM models are rich in reports. There are so many, it is easy to get lost in the wide array of report options
and their many variations. It is also easy to forget that the cost from a FICSM model most often represents
the “as expended” rather than “as obligated” estimate to be consistent with the schedule.. There are a few
ways to approach this disconnect.

e Convert to TY: Extract the FISCM phased results to develop an as expended profile. Use raw
inflation indices to inflate to the current year and sum the total to arrive at a single total in TY dollars
that are obligated at the beginning of the phase. This becomes more complicated if there are to be
multiple obligations through any specific phase. The schedule would have to be re-worked to ensure
there is an as expended string of activities associated with each planned obligation.

e Convert to Obligation: There are some presentations in the public domain that propose various
methods to convert an expenditure profile to an obligation profile such as Reference 32.

¢ Build an Obligation Schedule: Instead of an expenditure schedule, build one based on obligations
directly. This is often done in cost estimating. The problem with this option is that most schedules
are not created this way..

At the time of this report, virtually every FICSM tool has ignored the implementation of inflation. The
assumption is that all costs are entered in a specific constant year (base year). This is how we loaded the
example FICSM model, therefore we will apply the first approach.

The next most common aspect of the model that is ignored is the number of trials (iterations) required to
converge. For the CISM model, 7,000 trials were required for EMD and 5,000 for Production (see Section
3.4.3 for details). Figure B-16 illustrates that for this example FICSM model, EMD required 5,000 trials
while only 1,500 trial were necessary for Production. We will use 1500 trials to generate the Production
reports from the example FICSM model.
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Figure B-16 Trials Required for a Converged FICSM Cost Result

B.6.2 FICSM Project Level Reports

A primary reason to build the FICSM model is to identify the relationship between cost and schedule.
Consequently one of the first reports analysts will examine is the scatterplot where cost is on the y-axis and
either duration or finish date is on the x-axis. Each point on Figure B-17 represents the result of a specific
trial (iteration). In this case, they represent the 1,500 results from the simulation.. The cross hairs on the left
image are set to the point estimate cost and schedule. 0.8% of the trial results fall under the point estimate
cost and before the point estimate finish date. This is known as the Joint Confidence Level (JCL) for the
project. The yellow line is the 50% frontier, meaning if the cross hairs are centered anywhere on the yellow
line, the JCL will be 50%. In the image on the right, the cross hairs are set to 60% for the date and 60% for
cost. For this example project, this results in a JCL of 43.4%. These colorful charts have been in use for
over five years, but are seldom used when reporting to management. They are useful for the analyst to
validate simulation behavior; visualize the JCL; and discuss within an estimating team’s technical review.
But there are many other FICSM charts that are more useful for reporting to management.
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Figure B-17 Scatterplot of EMD Finish Date vs. Cost

While it may seem unlikely to find close agreement amongst the various FICSM-like tools on the market,
Booz Allen and Hamilton, in support of a study for NASA Glenn Research Center, released Figure B-18 that
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compares three different FICSM-like models. As Figure B-18 shows, reasonably close comparison between
tools is possible.
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Figure B-18 Different Model Compared Across Three Tools

A GANTT® chart depicts progress in relation to time and is used in planning and tracking a project. It shows
activities as a series of bars and illustrates information such as work complete, durations, milestones and
linkages. There are several variations on the GANTT that are possible from FICSM model results. Figure
B-19 illustrates the PEg in the upper left. The lower left shows a point estimate based on using the activity
mean durations. But the more interesting charts are on the right. The top right illustrates the uncertainty of
the activity start and the bottom right shows the potential finish dates.

¥ Named after Henry Laurence Gantt (1861-1919)
B-22



Joint Cost Schedule Risk and Uncertainty Handbook

PEs M—— m— — —— e— Start Uncerta“']ty 12/5/2017 /8200 10112/2025 91672029 £20/2033
Task Cost s =
T Producaen T$164,560,000 &
| Prod O Awed | 10/ Prod Qi Award
& Mg $105.839,000 = Pud Mg s105.038.
Proc Materisis $35.765.000 — Proc Matenais $35.765. = —
v £53.641.000 — & avig 5364 e — ——
5 AV Mg (No Rk} #53.640.000 (1] — AV Mig (o Risk) 333,648,000 R —
AV Mg (T $48,283, 200, — AV RRS2 Gudance
AV Mg (1D} 55,364,800 — wie s16.426 e ——
AV RRE2 Gudrca 0. | 5 Pod Tanng sa.24, ) ——
& pmc $16.426,000 — Prod T T ey | —
B i) 4,234,000 4 Pred Traning (TD) $677. ppr—
Frod Trarg (T 53.556,560 4 e ) ———
Prod Trsng (D) $677,440. b - Pud STIE 1500345 ——
Pred STIE 5,003,000 ¥ & Frod Ouko oty
& PrdDae $4.234,000 Fred Duta 1) $2,556. —
Frod Data (T1) 53,556,560, Prod Data (TD) $677.
o] -8 e foarE Pyt —— o —
Fred PSE 00 - S b Spares § Rep Fasts 15,601
5 int Spaes & g Pas $15.601,000 it Sowves & Rep Pasa (T) s13,100,1]
ot Sowes 4 s Pt 1) s13.104,840 it Soares § g Pans (TD) s$2.456.
It Soares § Rep Parts (TD) $2.496,160 = Prod SEPM $22,015.
& Prod SEPM. $22.015.000, M 10,007,
iy 2 00s000 e o e —
el e s Debvey (s of e 30. 4 g e Doy Erdd oo = =
L= Plon_mem Sunmory qEmmp Hammock g Risk Event mem Flon, s Summary: g Hammock ge==p RakEvent mem
Sus (o
Coidee S un T n 4 S S G 7w
Mean Activity Durations || izsz 182021 1001212025 9/16/2029 Finish Uncertainty il bdians |iz7a0s bt P
Task cost Task Cost
— L T1ea5ea,
| enia — o —_—
& Pred My 4105839, e L0588,
Proc Materals 535,765, — Froc Materis 25,745,
= AvMg 553,648, — S AV MG 553,648, e —
% A Mg o Rek) 53,648, —— AV Mg (No Rsk) 553,648, ——
PR Gadmace ) AVRREZ Gudance ———— | c—
AT 516,426, —— WTSC $16,425. e e —
S— = Prd Tranng 424, 4
Prod Traing (T $3.538, &
— Fod T (10) P
— Prd STSE $5,002.(g
= Prd Data $4.234.
Prod Dats (T) $3,556.
Prod Duta (TD) 8677 N
o Prd PSE $7.634.
5 It Spwres & Rep Pans s15.601
ik Soares § Rep Parts (1) 513,204,
Int Spares § Rep Parts (TD) $2,496.
& Prd SEPM 22ms
Prod PM £10,007,4
Prod SE s12.008.
* Fial Review and Debvery (End o Projec
Al Kl ) »
Moon wmm  Summory. qmmmp Hommock dmmsp  Risk Evert e Flsn wmm  Summary qmEmp rammock e  Risk Evenl e
S |[Crer

Confidence: 5% 14% 23% 32% 41% 50% 58% 68% J77% B6% 5%
[ Seed e

Figure B-19 GANTT Charts From the FICSM Example Model

In addition to GANNT charts, FICSM models provide cost uncertainty by year as illustrated in Figure B-20.
The image on the left shows the uncertainty by year, with the cumulative on the right. The PE and the mean
cost are also shown for reference.
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Figure B-20 Cost Uncertainty by Year in BY 2014 §

The final project level chart we will introduce is called an “overlay” chart. This chart is an effort to put a
variety of information on a single chart. Figure B-21 illustrates the concept. The planned dates for various
milestones are plotted against the cost expended to that point (yellow points). The various clusters are the
simulation results for these key events in the project. Additionally, the risk register events are plotted where
the size is a relative measure of impact and the color a relative measure of probability of occurrence (green
for low, red for high). This chart provides a high level, overall view of how much the project might cost,
how long the project may take and when the risk register events are expected.
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Figure B-21 Overlay Chart

B.6.3 FISCM Sensitivity Reports

For sensitivity analysis, there are a wide range of reports to consider.

Every FICSM tool and every

discussion of FICSM like reports (see Reference 83 as an example) will have a variation of the following

types of reports:

e Cost Sensitivity: correlation between task cost and total program cost; see Figure B-22.

e Duration Sensitivity: correlation between task duration and total program duration; see Figure B-22.

Correlation of Cost to EMD Total Cost

Correlation of Duration to EMD Total Duration

EMD SW Detailed Des
EMD HW Detailed Des

EMD SW Refinemnents
EMD SW Sys Des
EMD SW Initial Des
EMD SW Detailed Des
[EMD HW Detailed Des

Figure B-22 FICSM Cost and Duration Sensitivity
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Duration to Cost Sensitivity: correlation between task duration and total program cost; see Figure
B-23.

Criticality Index: probability that a specific task lies on the schedule’s critical path; see Figure
B-23.

Corralation of Duration to EMD Total Cost Percent Time on Critical Path

Figure B-23 FICSM Duration Sensitivity to Cost and Criticality Index

Cruciality Index: the product of the criticality index and the selected sensitivity. For instance,
cruciality index for duration would be the product of a task’s probability on the critical path times the
correlation of the task’s duration to the total project duration. In Figure B-23 SW Initial Design and
SW System Design are about the same when considering the duration uncertainty’s impact on the
total EMD cost uncertainty. However, SW System Design is not on the critical path as often (49%)
as SW Initial Design (54%). SW Initial design is more crucial than SW System Design.

Risk Register Criticality: the probability that a risk register event will be on the critical path if it
occurs. Figure B-24 shows that the Software Risk Register item is on the critical path 92% of the
time when the risk is realized. On the other hand, the Guidance item almost never is on the critical
path.

Discrete Risk Ciriticality

EMD SW RR#1 EMD (30% Occ.).

1e, and probability

Figure B-24 FICSM Discrete Risk Criticality
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The first three reports (sensitivity)
are recognized as important
products of the FISCM process in
that they identify the cost and
schedule uncertainty drivers. But
there is much dispute on how to
perform the measurement.
Measuring the correlation between
a target activity and every other
activity in the network could yield
spurious results (see Section 4.1.6
for details on this issue). Creating
these charts with correlation
enabled and disabled will help
identify the seriousness of any
problem. As an alternative, many
analysts have resorted to turning
uncertainty off one activity at a
time to measure the impact on the
total of interest.

There are many variations on
FICSM driver charts, the ones
shown here are just a few. The
final set of charts we will mention
is 1illustrated in Figure B-25.
These charts help identify tasks
with the greatest potential overrun
on duration, start and finish.
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Figure B-25 EMD Duration, Start and Finish Relative to Baseline

These and other reports are only possible from a FICSM model. They provide significantly more
information than the CISM approach. Industries such as oil and gas have used these tools for over a decade.
DoD and NASA, on the other hand, are just getting started.
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