

Project Management History

A Brief History of Agile

 1 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

Introduction

The history of applying agile approaches to software development

appear to be as old as the development of large software systems. This

article will trace the evolution of the techniques used to develop

software programs from SAGE, the first major system, through to the

present with a focus on management methodologies.

To achieve this objective, this article will briefly consider the evolution

of computer hardware, operating systems, and programming languages

as they affect and enable the management processes. However, we

have made no attempt to fully document these aspects (there are many

other authoritative publications covering these topics).

There is also a need to limit the scope of ‘agile’ considered in this article

and its counterpart loosely described as ‘waterfall’. The Agile Manifesto

covers a broad sweep including stakeholder (customer) engagement,

the desirability of change during the project, and the way people are

managed. Most of these concepts are simply good management, and conversely not taking these factors

into consideration is bad management!

For example, it is just as easy to micro-manage a scrum team as it is to micro-manage a pre-planned

(waterfall) project; micro-management is bad management regardless of the development approach used.

Similarly, adapting or adopting beneficial change is desirable, but both the context of the development and

the development approach used can limit the benefits of change. So, accepting there is a lot of bad

management around, and agility is a generally desirable characteristics, these aspects are only considered

in the body of this article when necessary.

The aspect of agile and system development this article focuses on is the use of iterative and/or

incremental development processes versus a single pass, pre-planned development process, and the

factors leading to the reintroduction of a single pass, pre-planned development process in the form of

waterfall in the mid to late-1970s.

Foundations of the Computer Industry – 1940s and Before

Using a relatively sophisticated mechanical device to produce or calculate a result has 1000s of years of

history. One of the most notable from antiquity is the Antikythera Mechanism1, the world’s oldest existing

analogue computer, created by the Ancient Greeks around 250 BCE to provide a ‘ready reckoner’ showing

the Greek zodiac and an Egyptian calendar, information about lunar cycles and eclipses, and the movement

of the five known planets.

Later, during the Industrial Revolution (1801), the Jacquard loom used punched cards to hold complex data.

It was a mechanical loom that simplified the process of manufacturing textiles with complex patterns. The

1 For more on the Antikythera Mechanism see: https://en.wikipedia.org/wiki/Antikythera_mechanism

 A Brief History of Agile

 2 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

loom was controlled by a replaceable chain of cards, a number of punched cards laced together into a

continuous sequence. Multiple rows of holes were punched on each card, with one complete card

corresponding to one row of the design. Charles Babbage knew of Jacquard looms and planned to use cards

to store programs in his Analytical engine (1837).

By the 1940, the use of machines to calculate solutions to complex problems was evolving rapidly. One of

the best examples was the fire control table found in most major warships. This was a true mechanical,

analogue computer, processing multiple inputs to achieve a firing solution. Inputs included the speed and

direction of the ship, the estimated speed and direction of the target, estimated range to the target (often

greater than 20 miles / 30 Km), barometric pressure, air temperature, wind direction, and the curvature

and relative speed of rotation of the earth in both locations. The output was the angle of elevation and

direction of the guns to fire shells that would arrive a couple of minutes later within a few meters of the

position the target was expected to be in (at speeds in excess of 30 miles per hour this would not be where

the ship was at the time of firing).

HMS Belfast – Admiralty Fire Control Table

Designing and building this type of equipment and the manufacture of all of its component parts required a

complete and highly detailed design to be 100% correct before the cutting, machining, and welding could

start. There was only one chance to get the final assembly correct. Prototyping and carrying forward

learned experience would be essential but the manufacture of a table for installation in a ship was a case of

do it once and do it right. Over the course of the 1940s this type of equipment transitioned from pure

mechanical, to electro/mechanical and then to full electrical systems in the 1950s.

The next area of development was the building of computers to fulfil a specific role. The example below is

the famous Bombe built to decode the German Enigma cypher used during WW2. The Bombe was an

electro/mechanical computer designed to mimic the workings of the Enigma machines and rapidly test

 A Brief History of Agile

 3 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

1000s of combinations to find which settings out of the millions of possibilities were being used on a

particular day. When the Germans changed the physical structure of their Enigma machines, the Bombe

had to be rebuilt. Similar machines were built for various military and civilian purposes. But again, the

requirement for a complete design before building the machine was essential.

Replica of the Bletchley Park Bombe Computer

This type of early computer was complex electrical/mechanical engineering device that had to be built right

to function correctly, meaning detailed design was needed before work on building the computer could

start. Bug fixing to correct errors required physically changing the machine.

Early Programable Computers – 1950s

The development of programmable computers also began in the 1940s at Bletchley Park. The Colossus

computer was built to help in the cryptanalysis of the German Lorenz cypher. It used thermionic valves

(vacuum tubes) to perform Boolean and counting operations. Colossus is arguably the world's first

programmable, electronic, computer, although it was programmed by physically changing switches and

plugs, not by a stored program. Again, because of the physical nature of the machine, detailed design

before building of the computer was essential. These developments were closely guarded secrets until the

1970s, but the technology was shared with the USA, and helped kick-start the modern computer industry.

 A Brief History of Agile

 4 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

Part of the Colossus Computer

John Mauchly and J. Presper Eckert of the University of Pennsylvania are credited with designing the

Electronic Numerical Integrator And Computer, or ENIAC, the world’s first general purpose electronic digital

computer, completed in 1945. ENIAC was also programmed through a physical system of adjusting switches

and cables manually.

Australia’s CSIRAC was the fifth

electronic stored program

computer in the world, and ran its

first test program late in November

19492.

Computers that could be

programmed by running software

required improvements in

memory. This started to be

available in the form of magnetic-

core memory in 1950 when the

United States government received

the UNIVAC (Universal Automatic

Computer) 1101 or ERA 1101. This

computer is considered to be the

first computer that was capable of

2 For more on CSIRAC, and computers of this generation see The Last of the First, CSIRAC: Australia’s First

Computer: https://mosaicprojects.com.au/PDF-Gen/CSIRAC_the-last-of-the-first.pdf

 A Brief History of Agile

 5 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

storing and running a program from memory. As with everything associated with computers in the 1950s

and 60s, both processing power and memory improved rapidly, making the concept of computer

programming viable as a separate discipline to designing and building the computer hardware.

The Development of Programming Languages

The earliest computer programs were written in either machine code (specific to the computer), or

Assembly language which was a type of computer programming language that was easier to use and could

then be compiled into machine code language to run.

One example was Autocode, published in September 1952 by Alick Glennie, a student at the University of

Manchester, England. This was the first of several programs called Autocode written for the Manchester

Mark I computer. Autocode was in two parts, the programming language, and the compiler used to convert

the program into machine language.

Through to the mid-1950s, developments were fragmented and scattered. The first general programming

language was developed in 1957 by John Backus, when he created FORTRAN, which is a computer

programming language for working with scientific, mathematical, and statistical projects. This was quickly

followed by Algol in 1958. Algol was a precursor to programming languages such as Java and C. Then COBOL

was created by Dr. Grace Murray Hopper in 1959 as a language that could operate on all types of

computers.

Prior to the development of FORTRAN and COBAL, most software developments were undertaken by small

teams led by a mathematician or scientist. For example, the team that developed the CPM software for

DuPont between 1956 and 19583 consisted of:

1 Mathematician (James Kelley) who developed the model,

1 Technical Supervisor (John W. Mauchly), and

5 programmers (not full time: three worked on the initial UNIVAC1 version, two rewrote the software for

the Univac 1103A/1105 computer in Unicode an Assembly/compiler language).

It is also interesting to note, the development of the CPM software went through three main phases and

was incremental.

After 1960, the rapidly increasing power of the computers, and the availability of general computer

languages changed computer programming from a bespoke cottage industry led by scientist and engineers

into a core capability. Ever larger, more complex, programs were envisaged and developed, creating the

management challenges this article is focused on.

Two developments in particular enabled the use of iterative and incremental development. The first was

the concept of Object Oriented Programming (OOP) which evolved through the 1960s. The second and

more important was the public release of Smalltalk 80 in 1981 (the Smalltalk program had been evolving for

a decade within PARC4). Smalltalk is a purely object oriented programming language.

These developments were initially on mainframe computers, Mini-computers stared to appear in the mid-

1960s and what most people consider computers these days, the Micro-computer (IBM PC, Apple, etc.)

were not developed until the mid-1980s.

3 For a firsthand account of this project, see The Origins of CPM, A Personal History by James E. Kelley and Morgan

R. Walker, pmNetwork, Feb 1989: https://mosaicprojects.com.au/PDF-Gen/Kelley+Walker-PMN-1989.pdf

4 PARC: Xerox Palo Alto Research Center

 A Brief History of Agile

 6 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

The sequence of agile programming methods is included in the Flavors of Agile – 1970s to 2020s section of

this article (page 16).

Managing Complex Software Developments

SAGE

The Semi-Automated Ground Environment (SAGE) involved a system of networked computers used to

coordinate data from many radar stations, and collate it into one unified picture. The project started in

1953, and went operational in the late 1950s as part of the NORAD (North American Air Defense

Command) early warning infrastructure. SAGE used a centralized computer built by IBM known as the

AN/FSQ-7 Combat Direction Central, it weighed about 250 tons, had 60,000 vacuum tubes, required 3 MW

of energy to run, and could execute 75,000 instructions per second.

Developing the SAGE software was a huge undertaking that ran concurrent to, but independent of the

manufacturing processes. The scale of the challenge made it the first software development project large

enough to require a software development methodology; so the engineers working on SAGE created one.

The methodology used for SAGE, and opportunities for improvement, are described in a 1956 presentation

given by Herbert D. Benington: Production of Large Computer Programs5.

The SAGE program was written making holes in punch cards that could be read by the computer as machine

language. This made checking and testing the code difficult. The approaches used to minimize issues included

prototyping, as well as detailed design and extensive testing.

Part of one of the SAGE computer rooms, USAF

5 Download the 1983 paper adapted from the 1956 presentation Production of Large Computer Programs from:

https://mosaicprojects.com.au/PDF-Gen/Benington_-_Production_of_Large_Computer_Programs.pdf

 A Brief History of Agile

 7 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

But to quote Benington “the biggest mistake we made in

producing the SAGE computer program was that we

attempted to make too large a jump from the 35,000

instructions we had operating on the much simpler

Whirlwind I computer [the prototype] to the more than

100,000 instructions on the much more powerful IBM

SAGE computer. If I had it to do over again, I would have

built a framework that would have enabled us to handle

250,000 instructions, but I would have transliterated

almost directly only the 35,000 instructions we had in

hand on this framework. Then I would have worked to

test and evolve a system. I estimate that this evolving

approach would have reduced our overall software

development costs by 50 percent.”

While Figure 4 from Benington’s paper may look like a

waterfall approach; this flow was applied to each

subprogram and was in large part a consequence of the

programming language and use of punch cards.

In the foreword to his 1983 paper, Benington wished the

SAGE team could have used an evolving approach, based

on prototyping and testing, in other words, an emergent

design! Which of course is a similar concept to those applied in Extreme Programming and some other agile

methodologies. Benington’s own estimate is that iterative development would have reduced the cost of the

SAGE project by 50%. But, as he also noted, software development tools and processes had vastly improved since

the late 1950s6.

Project Mercury –1958 to 1963

Project Mercury started in 19587. The software team had their own computer and the new Share Operating

System, whose symbolic modification and assembly allowed them to build the system incrementally, which they

did, with great success. They ran with very short (half-day) iterations that were time boxed. The development

team conducted a technical review of all changes, and applied the Extreme Programming practice of test-first

development, planning and writing tests before each micro-increment. They also practiced top-down

development with stubs. Project Mercury was the seed bed out of which the IBM Federal Systems Division grew

based on a history and tradition of incremental development8.

6 A detailed discussion on SAGE and Benington’s paper is included in the Blog Waterfall vs. Agile: Battle of the

Dunces or A Race to the Bottom?:

https://kallokain.blogspot.com/2023/11/waterfall-vs-agile-battle-of-dunces-or.html

7 Project Mercury was the first human spaceflight program of the United States:

https://en.wikipedia.org/wiki/Project_Mercury

8 A detailed history of IID is contained in Iterative and Incremental Development: A Brief History:

https://mosaicprojects.com.au/PDF-Gen/History_of_Iterative_and_Incremental_Development.pdf

 A Brief History of Agile

 8 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

Winston Royce

The next significant paper, discussing his experience developing major software programs for satellites, is a 1970

whitepaper by Dr. Winston Royce, Managing the Development of Large Software Systems9. While Royce did

introduce the concept of waterfall in this paper. What many commentators leave out is what he wrote about the

waterfall approach:

…the [waterfall] implementation described above is risky and invites failure.

… The testing phase which occurs at the end of the development cycle is the first event for which timing, storage,

input/output transfers, etc., are experienced.

… one can expect up to a 100-percent overrun in schedule and/or costs.

While Dr. Royce did believe in breaking a project down into a linear sequence of phases, he understood very well

that feedback and making corrections iteratively are necessary10. His summary of his preferred model is:

US DoD Specifications

The development of major software programs remained high-risk through the 1970s. This was particularly true in

the development of major defense projects, where everything tended to be bleeding edge. To help mitigate the

9 Download Managing the development of large software systems, Proceedings, IEEE WESCON, August 1970:

Dr. Winston W. Royce

https://mosaicprojects.com.au/PDF-Gen/Royce_-_Managing_the_development_of_large_software_systems.pdf

10 For more in-depth discussion on Royce’s paper see:

https://kallokain.blogspot.com/2023/09/waterfall-dark-age-of-software.html

https://mosaicprojects.wordpress.com/2024/01/14/the-problem-with-waterfall/

 A Brief History of Agile

 9 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

risk, in 1985 the US Department of Defense issued DOD-STD-2167 Defense System Software Development –

Requirements for the development of mission critical software11.

This specification unequivocally advocates an iterative approach to software development:

Appendix B:

Through to this point in time, the consensus of major software developers seems to have been:

1. Iterative development reduces risk and cost

2. Prototyping reduces risk and cost

3. Testing and feedback are essential at every stage of development.

So where did waterfall come from?

The Waterfall Dead-End

The start of the waterfall concept, or at least the first publication to use the term Waterfall, was the 1976

paper Software Requirements: Are They Really a Problem12, by T.E. Bell and T.A. Thayer.

The key paragraph states:

“The evolution of approaches for the development of software systems has generally paralleled the

evolution of ideas for the implementation of code. Over the last ten years more structure and discipline have

been adopted, and practitioners have concluded that a top-down approach is superior to the bottom-up

approach of the past. The Military Standard set MIL STD 490/48313 recognized this newer approach by

specifying a system requirements document, a "design-to" requirements document that is created in

response to the system requirements, and then a "code-to" requirements document for each software

module in the design. Each of these is at a lower level of detail than the former, so the system developers

are led through a top-down process. The same top-down approach to a series of requirements statements is

11 Download a copy of DOD-STD-2167 Defense System Software Development – Requirements for the development

of mission critical software (1985) from: https://mosaicprojects.com.au/PDF-Gen/DOD-STD-2167.pdf

12 Download Software Requirements: Are They Really a Problem:

https://mosaicprojects.com.au/PDF-Gen/software_requirements_are_they_really_a_problem.pdf

13 Note: These are configuration management standards, not software development documentation.

 A Brief History of Agile

 10 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

explained, without the specialized military jargon, in an excellent paper by Royce; he introduced the concept

of the "waterfall" of development activities. In this approach software is developed in the disciplined

sequence of activities shown in Figure I.

Each of the documents in the early phases of the waterfall can be considered as stating a set of

requirements. At each level a set of requirements serve as the input and a design is produced as output. This

design then becomes the requirements set for the designer at the next level down.”

Note: Neither of the authors of this paper (Bell or Thayer) appear to have any expertise in the management

of large software development projects. Their focus is on requirements management and configuration

control, and their conclusion is the false assumption you can fully specify a software system before doing

any development – if the documentation is not correct, do more documentation…. Once the

documentation is perfect, development of the software will just happen.

The Bell & Thayer paper clearly misrepresents the 1970 paper Managing the development of large

software systems, by Dr Winston Royce (which shows a limited understanding of software development).

However, what it does show is a desire to instill discipline and control into the software development

process similar to the engineering discipline needed to design and manufacture mechanical computers in

the 1940s and still needed to manufacture complex mechanical equipment in the 1970s and 80s.

This attempt to force mechanical engineering discipline onto the software development process fed into

the 1988 update to DOD-STD-2167A Defense System Software Development14. This updated standard

shifted the requirements for the development of mission critical software to a sequential approach

[waterfall] by default].

DOD-STD-2167A does reference iterative and recursive approaches to development, but tends to make

implementing this type of approach difficult. If not impossible, in the detailed requirements.

14 Download a copy of DOD-STD-2167A Defense System Software Development (1988) from:

https://mosaicprojects.com.au/PDF-Gen/DOD-STD-2167A.pdf

 A Brief History of Agile

 11 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

The same general flow in development as previously used is detailed, with an option that the sequence

‘may be applied iteratively or recursively’.

However, the Standard then goes on to require:

These general requirements are followed by pages of mandatory documentation and analysis (part only

shown):

 A Brief History of Agile

 12 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

And, the required documentation shown in Figure 2 is waterfall in everything but name:

 A Brief History of Agile

 13 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

Add the normal government inspection and validation requirements at each stage and you have the

waterfall methodology.

DOD-STD-2167A Defense System Software Development was superseded in 1994 by the publication of

MIL-STD-498: Software Development and Documentation15.

15 Download a copy of MIL-STD-498: Software Development and Documentation (1994):

https://mosaicprojects.com.au/PDF-Gen/MIL-STD-498.pdf

 A Brief History of Agile

 14 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

This is a much thicker standard, and it allows any appropriate approach to software development to be

used:

And provides guidance on the appropriate approach to use based on a risk assessment:

Over the intervening years, the USA DoD, NASA, and government in general have adopted agile with a

focus on iterative and incremental development across most aspects of their software development and

maintenance16. Another important development (which may be the subject of a future paper) is a focus on

increasing the probability of success for complex system of systems by integrating systems engineering with

agile project management17.

16 A detailed listing of current US publications focused on using Iterative and Incremental Development (IID) and agile

in major programs, including linking agile with EVM, has been published by Glen Alleman, see Agile in NASA, DoD,

and DOE: https://www.linkedin.com/pulse/agile-nasa-dod-doe-glen-alleman/

17 For an overview on systems engineering and agile see Agile is Systems Engineering:

https://www.linkedin.com/pulse/agile-systems-engineering-glen-alleman/

 A Brief History of Agile

 15 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

However, by the time MIL-STD-498 was published, the habit of waterfall was entrenched in many

organizations (not just the DoD and its contractors) and continues to be used through to the present time.

Waterfall’s attraction

The attraction of waterfall to DoD management is to an extent understandable:

1. The management paradigm was hard engineering - you need the design of an aircraft or missile to

be close to 100% before cutting and riveting metal - computers were very new big pieces of 'metal'

why treat them differently?

2. For the cost of 1 hour's computer time, you could buy a couple of months of software engineering

time - spending time to get the design right before running the computer nominally made cost-

sense.

3. The ability to work on-line was only just emerging and memory was very limited. Most input was

batch loaded using punch cards or tape (paper or magnetic). Expecting skilled engineers to do-it

right, load-it-once and see working code may not have seemed too much to expect from skilled

engineers.

The problem was in the 1980s no one really understood the effects of complexity so when problems

emerged it was easier to blame human error rather than the challenges of developing systems of systems.

Waterfall’s resilience

There seems to be two reasons for the long-term survival of waterfall.

The first is the illusion of control – the waterfall process generates documentation that can be checked and

a detailed plan that rarely achieved. But many managers like to feel in control even if it is an illusion. An

iterative, emergent process may deliver better outcomes but requires a collaborative approach, skill, agility,

and trust. Unfortunately, far too many managers seem to opt for the illusion of ‘command and control’ –

they can always blame the contractor (or project manager) when the inevitable delays and cost overruns

occur.

The other driver is financial. From the perspective of a contractor, and given many of the contracts using

this standard were cost reimbursable, and/or cost increases were relatively easy to obtain if changes were

required to previously approved documents, which option would you prefer:

• An approach that requires less training, and compensates you for delays and cost overruns, or

• An approach that will require you to spend money on extra training for your people, and will

simultaneously reduce project lead time and cost?

There was a powerful financial incentive for contractors to stick to a waterfall approach.

However, the situation is more complex. In his discussions on agile and waterfall, Glen Alleman18 often

suggests ‘Don't so stupid things on purpose!’, this is sound advice. But, ‘stupid’ depends on your

perspective:

• There are some projects, similar in nature to the early mechanical computers discussed at the start

of this article that need to be designed and developed sequentially, these are typically ‘hard’

18 Glen Alleman, Herding Cats Blog: https://herdingcats.typepad.com/

 A Brief History of Agile

 16 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

engineering and construction type projects. The processes used are not waterfall but are design

driven and sequential (often with overlaps between phases)19.

• Then there are all of the other ‘soft’ projects20 that produce largely intangible outputs, software,

business change, marketing, etc. These projects will generally benefit from an adaptive, agile

approach but:

o Agile concepts only work effectively with management support, they require a supportive

culture,

o Hybrid systems tend to deliver the worst of both worlds,

o If your focus is on making profits as a contractor, waterfall is not a bad idea, but

o If your focus is on client satisfaction, the right agile approaches are likely to deliver better

outcomes.

For a detailed discussion on this see The Myth of the waterfall SDLC 21.

Flavors of Agile – 1970s to 2020s

Agile has many flavors and variations that continue to evolve, and as outlined above the ideas of iterative,

incremental, and evolving development processes predate the publication of the Agile Manifesto in 2001.

Iterative and incremental development predates major software developments, IID grew from the 1930s

work of Walter Shewhart, a quality expert at Bell Labs who proposed a series of short “plan-do-study-act”

(PDSA) cycles for quality improvement. This concept was picked up and promoted in the 1940s by quality

guru W. Edwards Deming.

The X-15 hypersonic jet was a milestone 1950s project applying IID, and the practice was considered a

major contribution to the X-15’s success. Although the X-15 was not a software project, it is noteworthy

because some personnel moved across to NASA’s early 1960s Project Mercury, which did apply IID in

software and the IBM Federal Systems Division (FSD), another early IID proponent22.

Some of the key concepts and methodologies used in software development are:

1953 Prototyping. Used on the SAGE project.

1968 Iterative and Incremental Development (IID). Promoted by Brian Randell and F.W. Zurcher at the

IBM T.J. Watson Research Center. Also advocated by Royce in his 1970 White Paper. IID focuses on

an evolutionary development process with rigorous testing at each stage.

1981 Object-Oriented Programming (OO). OOP was evolving for 20 years prior to the public release of

Smalltalk 80 which allowed the widespread adoption of modern software development approaches.

19 For more in-depth discussion on project types suited to either a planned approach, or agile, see The Problem with

Waterfall: https://mosaicprojects.wordpress.com/2024/01/14/the-problem-with-waterfall/

20 For a definition of hard and soft projects see Hard -v- Soft Projects:

https://mosaicprojects.wordpress.com/2023/01/21/hard-v-soft-projects/

21 For further discussion on this topic see The Myth of the waterfall SDLC:

http://www.bawiki.com/wiki/Waterfall.html

22 A detailed history of IID is contained in Iterative and Incremental Development: A Brief History:

https://mosaicprojects.com.au/PDF-Gen/History_of_Iterative_and_Incremental_Development.pdf

 A Brief History of Agile

 17 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

1988 Spiral. Barry Boehm publishes A Spiral Method of Software Development and Enhancement

advocating an iterative approach to development.

1991 Rapid Application Development (RAD). Book published by James Martin based on his work at IBM.

RAD puts less emphasis on planning and more emphasis on an adaptive process. Prototypes are

often used.

1994 Adaptive Software Development. Created by Jim Highsmith and Bayer, developed from RAD and

embodies the principle that continuous adaptation of the process to the work at hand is the normal

state of affairs.

1994 Scrum. Created by Ken Schwaber and Jeff Sutherland, as a management framework to support the

implementation of other software development (coding) methods. Scrum is designed for teams of

ten or fewer members, who break their work into goals that can be completed within timeboxed

iterations, called sprints.

1994 Dynamic Systems Development Method (DSDM). DSDM covers a wide range of activities across the

whole project lifecycle and includes strong foundations and governance. It is an iterative and

incremental approach that embraces principles of Agile development, including continuous

user/customer involvement.

1996 Extreme Programming (XP). Created by Kent Beck and Ron Jeffries to reduce risk and simplify

management. XP advocates frequent releases in short development cycles.

1997 Crystal Orange. One of the Crystal family of agile methodologies developed by Alistair Cook.

1997 Feature-driven development (FDD). FDD is an iterative and incremental software development

process, developed by Jeff De Luca, that blends a number of industry recognized best practices into a

cohesive whole.

1998 Rational Unified Process (RUP). Developed from 1996 onwards, as an iterative software

development framework based on OOP

2000 Adaptive software development (ASD). ASD grew out of RAD

2001 Agile Manifesto published23. Designed to increase awareness of the various agile methodologies.

2003 Lean Software Development. By Tom and Mary Poppendieck provides a theoretical foundation

explaining why agile works.

2004 Kanban. Is a system that is designed to reduce WIP (Work-In-Progress) and contribute to self-

managed teams continually delivering high value features. It was originally developed as part of the

Toyota Production System (manufacturing) in 1953. The use of Kanban software development was

pioneered by former Microsoft engineer David J. Anderson.

2004 Agile modeling (AM)24. AM is a method of modelling based on OO developed by Scott Ambler. AM iss

used for modeling and documenting software systems based on a collection of values and principles

that can be applied to a software development project. (Initially called eXtreme Modeling or XM)

23 For more on the Agile Manifesto see: https://mosaicprojects.com.au/PMKI-ITC-040.php#Process1

24 The Object Primer 2nd Edition published by Scott Ambler in 2004 described Agile Modelling (AM) in Chapter 2, this

built on previous books and concepts developed by Ambler.

 A Brief History of Agile

 18 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

2008 Agile unified process (AUP). AUP is a simplified version of RUP developed by Scott Ambler. It uses a

simple, easy to understand approach to developing business application software using agile

techniques.

2009 Scrumban. A hybrid of Scrum and Kanban.

2011 Scaled Agile Framework (SAFe). Used to implement Agile practices at an enterprise scale. Created by

Dean Leffingwell, SAFe 1.0 was a collection of best practices and principles to promote collaboration,

alignment, and improved decision-making across teams, programs, and portfolios. It applied the

principles of Agile development, Lean manufacturing, and systems thinking to large, complex, and

distributed software and systems development environments25.

2015 Disciplined Agile Framework (DA). Was developed to provide a more cohesive approach to agile

software development. Now owned by PMI. Disciplined agile delivery (DAD) is the software

development portion of the disciplined agile toolkit. It enables teams to make simplified process

decisions around incremental and iterative solution delivery.

2020s Standard project control processes integrated with agile. As agile becomes mainstream, integration

with standard project controls becomes more important26:

- Linking EVM and agile

- The development of Work Performance Management27.

Conclusions

Agile in the form of iterative development started with the SAGE, the world’s first major software

development project! And agile remains a real and evolving concept in project management.

Unfortunately, the development of agile is not being helped by the agile evangelists and anarchists. There

may be a place for no planning, no estimating, and just letting people get on with developing code.

However, this is only likely to occur in a limited number of situations:

• Small start-ups and other situations where the consequences of failure is not significant, and the

people doing the development own the outputs,

• Situations where agile approaches are being used for day-to-day maintenance28,

• Situations where the work is urgent and simply must be done.

Fundamentally, these types of work-space are not projects, even if agile methodologies are being used.

The Mosaic website is developed in this way.

For the rest of the world, various forms of agile with appropriate levels of discipline offer real advantages in

the development of a quality (ie, fit for purpose) product in most software and other soft project

environments. The appropriate methods to use and the levels of technical excellence and control required,

depend on the situation – there are plenty of guidelines available to provide advice.

25 For more on the evolution of SAFe see:

https://www.linkedin.com/pulse/evolution-safe-look-frameworks-adaptations-over-time-daniel-michael/

26 See Controlling Agile: https://mosaicprojects.com.au/PDF_Papers/P205-Controlling_Agile.pdf

27 For more on Work Performance Management see: https://mosaicprojects.com.au/PMKI-SCH-041.php#Overview

28 For more on non-project uses of Agile see De-Projectizing IT Maintenance:

https://mosaicprojects.com.au/Mag_Articles/N010_De-Projectising_IT_Maintenance.pdf

 A Brief History of Agile

 19 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

There are also many situations where agile is totally inappropriate, typically engineering, construction, and

other hard projects where significant design has to be completed before manufacturing, assembly, or

construction can start.

Problems start when management attempts to force traditional hard project approaches onto a soft

project. This is often done on the false assumption that following a heavily documented, pre-defined

sequence generates control, and/or allows detailed management (micro-management). 60+ years of

experience show this approach does not work when the product being developed requires innovation and

creativity (ie, a typical software project).

The biggest furphy29 is the illusion of ‘Waterfall Project Management’30. Waterfall did exist for a few years

as a software development methodology, but its origins were based on a false premise and the

organization that standardized the approach abandoned it to return to iterative development approaches.

The only people still talking about waterfall project management are either agile evangelists who use the

term to describe all forms of bad management, or people who have been confused by the evangelists.

The way forward is for management to first decide on the appropriate management approach based on the

type of project, then if agile is selected, work out how disciplined the development need to be and select

the best methodology to achieve a successful outcome.

First Published 1st February 2024 – Augmented and Updated

Downloaded from Mosaic’s PMKI
Free Library.

For more papers focused on PM History see:
https://mosaicprojects.com.au/PMKI-ZSY-010.php

Or visit our PMKI home page at:
https://mosaicprojects.com.au/PMKI.php

Creative Commons Attribution 3.0 Unported License.

Attribution: Mosaic Project Services Pty Ltd, downloaded from
https://mosaicprojects.com.au/PMKI.php

29 A furphy is Australian slang for an erroneous or improbable story that is claimed to be factual.

30 See There Was No Such Thing as Waterfall Project Management:

https://www.linkedin.com/pulse/thing-waterfall-project-management-glen-alleman-mas4c/

 A Brief History of Agile

 20 www.mosaicprojects.com.au

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

For more papers in this series see: https://mosaicprojects.com.au/PMKI.php

Try WPM on your projects:

The Easy WPM Workbook, is a practical spreadsheet that

performs the calculations needed to implement Work

Performance Management (WPM) to accurately calculate the

status and projected completion of your projects.

Download the free sample files, or buy the WPM Workbook and

instructions for use for $20 (plus GST for Australian purchasers

only), from:

https://mosaicprojects.com.au/shop-easy-WPM_WS.php

